Show simple item record

dc.contributor.authorSly, Allan
dc.contributor.authorSun, Nike
dc.contributor.authorZhang, Yumeng
dc.date.accessioned2022-01-20T13:16:03Z
dc.date.available2022-01-20T13:16:03Z
dc.date.issued2021-11-20
dc.identifier.urihttps://hdl.handle.net/1721.1/139632
dc.description.abstractAbstract Recent work has made substantial progress in understanding the transitions of random constraint satisfaction problems. In particular, for several of these models, the exact satisfiability threshold has been rigorously determined, confirming predictions of statistical physics. Here we revisit one of these models, random regular k-nae-sat: knowing the satisfiability threshold, it is natural to study, in the satisfiable regime, the number of solutions in a typical instance. We prove here that these solutions have a well-defined free energy (limiting exponential growth rate), with explicit value matching the one-step replica symmetry breaking prediction. The proof develops new techniques for analyzing a certain “survey propagation model” associated to this problem. We believe that these methods may be applicable in a wide class of related problems.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00440-021-01029-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleThe number of solutions for random regular NAE-SATen_US
dc.typeArticleen_US
dc.identifier.citationSly, Allan, Sun, Nike and Zhang, Yumeng. 2021. "The number of solutions for random regular NAE-SAT."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-20T06:29:34Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-01-20T06:29:33Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record