Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/139637.3

Show simple item record

dc.contributor.authorBlanchard, Antoine
dc.contributor.authorSapsis, Themistoklis
dc.date.accessioned2022-01-20T18:53:30Z
dc.date.available2022-01-20T15:10:05Z
dc.date.available2022-01-20T18:53:30Z
dc.date.issued2021-01
dc.date.submitted2020-10
dc.identifier.issn0021-9991
dc.identifier.urihttps://hdl.handle.net/1721.1/139637.2
dc.description.abstract© 2020 Elsevier Inc. In Bayesian optimization, accounting for the importance of the output relative to the input is a crucial yet challenging exercise, as it can considerably improve the final result but often involves inaccurate and cumbersome entropy estimations. We approach the problem from the perspective of importance-sampling theory, and advocate the use of the likelihood ratio to guide the search algorithm towards regions of the input space where the objective function to minimize assumes abnormally small values. The likelihood ratio acts as a sampling weight and can be computed at each iteration without severely deteriorating the overall efficiency of the algorithm. In particular, it can be approximated in a way that makes the approach tractable in high dimensions. The “likelihood-weighted” acquisition functions introduced in this work are found to outperform their unweighted counterparts in a number of applications.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.JCP.2020.109901en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleBayesian optimization with output-weighted optimal samplingen_US
dc.typeArticleen_US
dc.identifier.citationBlanchard, Antoine and Sapsis, Themistoklis. 2021. "Bayesian optimization with output-weighted optimal sampling." Journal of Computational Physics, 425.en_US
dc.relation.journalJournal of Computational Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-20T14:51:06Z
dspace.orderedauthorsBlanchard, A; Sapsis, Ten_US
dspace.date.submission2022-01-20T14:51:07Z
mit.journal.volume425en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version