Show simple item record

dc.contributor.authorRudy, Samuel H
dc.contributor.authorSapsis, Themistoklis Panagiotis
dc.date.accessioned2022-02-15T19:58:05Z
dc.date.available2022-01-20T15:32:57Z
dc.date.available2022-01-20T18:51:14Z
dc.date.available2022-02-15T19:58:05Z
dc.date.issued2021-04
dc.date.submitted2020-12
dc.identifier.issn0167-2789
dc.identifier.urihttps://hdl.handle.net/1721.1/139640.3
dc.description.abstract© 2021 Elsevier B.V. This work considers methods for imposing sparsity in Bayesian regression with applications in nonlinear system identification. We first review automatic relevance determination (ARD) and analytically demonstrate the need to additional regularization or thresholding to achieve sparse models. We then discuss two classes of methods, regularization based and thresholding based, which build on ARD to learn parsimonious solutions to linear problems. In the case of orthogonal features, we analytically demonstrate favorable performance with regard to learning a small set of active terms in a linear system with a sparse solution. Several example problems are presented to compare the set of proposed methods in terms of advantages and limitations to ARD in bases with hundreds of elements. The aim of this paper is to analyze and understand the assumptions that lead to several algorithms and to provide theoretical and empirical results so that the reader may gain insight and make more informed choices regarding sparse Bayesian regression.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/J.PHYSD.2021.132843en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourcearXiven_US
dc.titleSparse methods for automatic relevance determinationen_US
dc.typeArticleen_US
dc.identifier.citationRudy, Samuel H and Sapsis, Themistoklis P. 2021. "Sparse methods for automatic relevance determination." Physica D: Nonlinear Phenomena, 418.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalPhysica D: Nonlinear Phenomenaen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-01-20T15:25:39Z
dspace.orderedauthorsRudy, SH; Sapsis, TPen_US
dspace.date.submission2022-01-20T15:25:40Z
mit.journal.volume418en_US
mit.licensePUBLISHER_CC
mit.metadata.statusReady for Final Reviewen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version