Show simple item record

dc.contributor.authorWang, Ying
dc.contributor.authorSun, Zezhou
dc.contributor.authorXu, Cheng-Zhong
dc.contributor.authorSarma, Sanjay E
dc.contributor.authorYang, Jian
dc.contributor.authorKong, Hui
dc.date.accessioned2022-01-25T22:16:14Z
dc.date.available2022-01-21T19:21:39Z
dc.date.available2022-01-25T22:16:14Z
dc.date.issued2021-02
dc.date.submitted2021-01
dc.identifier.isbn978-1-7281-6212-6
dc.identifier.issn2153-0866
dc.identifier.urihttps://hdl.handle.net/1721.1/139649.2
dc.description.abstract© 2020 IEEE. In this paper, a global descriptor for a LiDAR point cloud, called LiDAR Iris, is proposed for fast and accurate loop-closure detection. A binary signature image can be obtained for each point cloud after several LoG-Gabor filtering and thresholding operations on the LiDAR-Iris image representation. Given two point clouds, their similarities can be calculated as the Hamming distance of two corresponding binary signature images extracted from the two point clouds, respectively. Our LiDAR-Iris method can achieve a pose-invariant loop-closure detection at a descriptor level with the Fourier transform of the LiDAR-Iris representation if assuming a 3D (x, y, yaw) pose space, although our method can generally be applied to a 6D pose space by re-aligning point clouds with an additional IMU sensor. Experimental results on five road-scene sequences demonstrate its excellent performance in loop-closure detection.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/IROS45743.2020.9341010en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleLiDAR Iris for Loop-Closure Detectionen_US
dc.typeArticleen_US
dc.identifier.citationWang, Ying, Sun, Zezhou, Xu, Cheng-Zhong, Sarma, Sanjay E, Yang, Jian et al. 2020. "LiDAR Iris for Loop-Closure Detection." IEEE International Conference on Intelligent Robots and Systems.en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalIEEE International Conference on Intelligent Robots and Systemsen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-01-21T19:15:27Z
dspace.orderedauthorsWang, Y; Sun, Z; Xu, C-Z; Sarma, SE; Yang, J; Kong, Hen_US
dspace.date.submission2022-01-21T19:15:33Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version