Show simple item record

dc.contributor.authorTsukamoto, Hiroyasu
dc.contributor.authorChung, Soon-Jo
dc.contributor.authorSlotine, Jean-Jacques E
dc.date.accessioned2022-01-24T19:48:55Z
dc.date.available2022-01-24T19:48:55Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/139679
dc.description.abstractWe present Neural Stochastic Contraction Metrics (NSCM), a new design framework for provably-stable learning-based control and estimation for a class of stochastic nonlinear systems. It uses a spectrally-normalized deep neural network to construct a contraction metric and its differential Lyapunov function, sampled via simplified convex optimization in the stochastic setting. Spectral normalization constrains the state-derivatives of the metric to be Lipschitz continuous, thereby ensuring exponential boundedness of the mean squared distance of system trajectories under stochastic disturbances. The trained NSCM model allows autonomous systems to approximate optimal stable control and estimation policies in real-time, and outperforms existing nonlinear control and estimation techniques including the state-dependent Riccati equation, iterative LQR, EKF, and the deterministic NCM, as shown in simulation results.en_US
dc.language.isoen
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)en_US
dc.relation.isversionof10.1109/LCSYS.2020.3046529en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleNeural Stochastic Contraction Metrics for Learning-based Control and Estimationen_US
dc.typeArticleen_US
dc.identifier.citationTsukamoto, Hiroyasu, Chung, Soon-Jo and Slotine, Jean-Jacques E. 2021. "Neural Stochastic Contraction Metrics for Learning-based Control and Estimation." IEEE Control Systems Letters, 5 (5).
dc.contributor.departmentMassachusetts Institute of Technology. Nonlinear Systems Laboratory
dc.relation.journalIEEE Control Systems Lettersen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-01-24T19:36:39Z
dspace.orderedauthorsTsukamoto, H; Chung, S-J; Slotine, J-JEen_US
dspace.date.submission2022-01-24T19:36:40Z
mit.journal.volume5en_US
mit.journal.issue5en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record