MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing Machine Learning Models With Prior Physical Knowledge to Aid in VIV Response Prediction

Author(s)
Ma, Leixin; Resvanis, Themistocles L; Vandiver, J Kim
Thumbnail
DownloadPublished version (1.789Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract Practical engineering prediction models for flow-induced vibration are needed in the design of structures in the ocean. Research has shown that structural vibration response may be influenced by a large number of physical input parameters, such as damping and Reynolds number. Practical response prediction tools used in design are inevitably a compromise between complexity and simplicity of use. Modern machine learning tools may be used to identify which input parameters are most important. Standard machine learning techniques enable the researcher to compile a list of the most important input parameters, ranked or ordered by the effect of each on the prediction error of the model. When all inputs are treated as equals, blind application of machine learning may lead to predictions that are inconsistent with prior physical knowledge. To address this problem, we conducted a parameter selection process using a prior knowledge-based, trend-informed neural network architecture. This approach was used to identify features important to the prediction of the cross-flow vibration response amplitude of long flexible cylinders, given the known prior effect of Reynolds number and damping. The model balances the usual goal of minimizing the model prediction error, but doing so in a manner that closely follows the extensive knowledge we have of the influence of Reynolds number and damping parameter on response. The resulting neural network model was able to reveal additional insights, including the role of mode number shifting, mode dominance and travelling waves in the regulation of VIV response amplitude.
Date issued
2021
URI
https://hdl.handle.net/1721.1/139744
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Volume 8: CFD and FSI
Publisher
ASME International
Citation
Ma, Leixin, Resvanis, Themistocles L and Vandiver, J Kim. 2021. "Enhancing Machine Learning Models With Prior Physical Knowledge to Aid in VIV Response Prediction." Volume 8: CFD and FSI.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.