Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/139821.2

Show simple item record

dc.contributor.authorSun, Shijing
dc.contributor.authorTiihonen, Armi
dc.contributor.authorOviedo, Felipe
dc.contributor.authorLiu, Zhe
dc.contributor.authorThapa, Janak
dc.contributor.authorZhao, Yicheng
dc.contributor.authorHartono, Noor Titan P
dc.contributor.authorGoyal, Anuj
dc.contributor.authorHeumueller, Thomas
dc.contributor.authorBatali, Clio
dc.contributor.authorEncinas, Alex
dc.contributor.authorYoo, Jason J
dc.contributor.authorLi, Ruipeng
dc.contributor.authorRen, Zekun
dc.contributor.authorPeters, I Marius
dc.contributor.authorBrabec, Christoph J
dc.contributor.authorBawendi, Moungi G
dc.contributor.authorStevanovic, Vladan
dc.contributor.authorFisher, John
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2022-02-01T15:07:01Z
dc.date.available2022-02-01T15:07:01Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/139821
dc.description.abstractSearch for resource-efficient materials in vast compositional spaces is an outstanding challenge in creating environmentally stable perovskite semiconductors. We demonstrate a physics-constrained sequential learning framework to subsequently identify the most stable alloyed organic-inorganic perovskites. We fuse data from high-throughput degradation tests and first-principle calculations of phase thermodynamics into an end-to-end Bayesian optimization algorithm using probabilistic constraints. By sampling just 1.8% of the discretized Cs MA FA PbI (MA, methylammonium; FA, formamidinium) compositional space, perovskites centered at Cs MA FA PbI show minimal optical change under increased temperature, moisture, and illumination with >17-fold stability improvement over MAPbI . The thin films have 3-fold improved stability compared with state-of-the-art multi-halide Cs (MA FA ) Pb(I Br ) , translating into enhanced solar cell stability without compromising conversion efficiency. Synchrotron-based X-ray scattering validates the suppression of chemical decomposition and minority phase formation achieved using fewer elements and a maximum of 8% MA. We anticipate that this data fusion approach can be extended to guide materials discovery for a wide range of multinary systems. Despite recent intensive efforts to improve the environmental stability of halide perovskite materials for energy harvesting and conversion, traditional trial-and-error explorations face bottlenecks in the navigation of vast chemical and compositional spaces. We develop a closed-loop optimization framework that seamlessly marries data from first-principle calculations and high-throughput experimentation into a single machine learning algorithm. This framework enables us to achieve rapid optimization of compositional stability for Cs MA FA PbI perovskites while taking the human out of the decision-making loop. We envision that this data fusion approach is generalizable to directly tackle challenges in designing multinary materials, and we hope that our successful showcase on perovskites will encourage researchers in other fields to incorporate knowledge of physics into the search algorithms, applying hybrid machine learning models to guide discovery of materials in high-dimensional spaces. Data fusion combines first-principle calculations and high-throughput experimentation into an end-to-end closed-loop optimization framework, allowing an accelerated search of alloyed halide perovskites in a combinatorial space without human intervention. x y 1−x−y 3 0.17 0.03 0.80 3 3 0.05 0.17 0.83 0.95 0.83 0.17 3 x y 1−x−y 3en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.MATT.2021.01.008en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceDOE repositoryen_US
dc.titleA data fusion approach to optimize compositional stability of halide perovskitesen_US
dc.typeArticleen_US
dc.identifier.citationSun, Shijing, Tiihonen, Armi, Oviedo, Felipe, Liu, Zhe, Thapa, Janak et al. 2021. "A data fusion approach to optimize compositional stability of halide perovskites." Matter, 4 (4).
dc.relation.journalMatteren_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-02-01T15:01:57Z
dspace.orderedauthorsSun, S; Tiihonen, A; Oviedo, F; Liu, Z; Thapa, J; Zhao, Y; Hartono, NTP; Goyal, A; Heumueller, T; Batali, C; Encinas, A; Yoo, JJ; Li, R; Ren, Z; Peters, IM; Brabec, CJ; Bawendi, MG; Stevanovic, V; Fisher, J; Buonassisi, Ten_US
dspace.date.submission2022-02-01T15:02:01Z
mit.journal.volume4en_US
mit.journal.issue4en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version