Show simple item record

dc.contributor.authorCha, Tae‐Gon
dc.contributor.authorTsedev, Uyanga
dc.contributor.authorRansil, Alan
dc.contributor.authorEmbree, Amanda
dc.contributor.authorGordon, D. Benjamin
dc.contributor.authorBelcher, Angela M.
dc.contributor.authorVoigt, Christopher A.
dc.date.accessioned2022-02-10T19:46:06Z
dc.date.available2022-02-10T19:46:06Z
dc.date.issued2021-06-23
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.urihttps://hdl.handle.net/1721.1/140277
dc.description.abstractAerogels are ultralight porous materials whose matrix structure can be formed by interlinking 880 nm long M13 phage particles. In theory, changing the phage properties would alter the aerogel matrix, but attempting this using the current production system leads to heterogeneous lengths. A phagemid system that yields a narrow length distribution that can be tuned in 0.3 nm increments from 50 to 2500 nm is designed and, independently, the persistence length varies from 14 to 68 nm by mutating the coat protein. A robotic workflow that automates each step from DNA construction to aerogel synthesis is used to build 1200 aerogels. This is applied to compare Ni–MnOx cathodes built using different matrixes, revealing a pareto-optimal relationship between performance metrics. This work demonstrates the application of genetic engineering to create “tuning knobs” to sweep through material parameter space; in this case, toward creating a physically strong and high-capacity battery.en_US
dc.languageen
dc.publisherWileyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1002/adfm.202010867en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceWileyen_US
dc.titleGenetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnO x Cathode Designen_US
dc.typeArticleen_US
dc.identifier.citationCha, T.-G., Tsedev, U., Ransil, A., Embree, A., Gordon, D. B., Belcher, A. M., Voigt, C. A., Genetic Control of Aerogel and Nanofoam Properties, Applied to Ni–MnOx Cathode Design. Adv. Funct. Mater. 2021, 31, 2010867en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Biological Engineering
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentKoch Institute for Integrative Cancer Research at MIT
dc.relation.journalAdvanced Functional Materialsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dspace.date.submission2022-02-09T19:52:17Z
mit.journal.volume31en_US
mit.journal.issue35en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record