MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Turbulence Dictates Bedload Transport in Vegetated Channels Without Dependence on Stem Diameter and Arrangement

Author(s)
Zhao, Tian; Nepf, Heidi M.
Thumbnail
Download10.1029-2021GL095316.pdf (1.478Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Vegetation provides habitat and nature-based solutions to coastal flooding and erosion, drawing significant interest in its restoration, which requires an understanding of sediment transport and retention. Laboratory experiments examined the influence of stem diameter and arrangement on bedload sediment transport by considering arrays of different stem diameter and mixed diameters. Bedload transport rate was observed to depend on turbulent kinetic energy, with no dependence on stem diameter, which was shown to be consistent with the impulse model for sediment entrainment. Existing predictors of bedload transport for bare beds, based on bed shear stress, were recast in terms of turbulence. The new turbulence-based model predicted sediment transport measured in model canopies across a range of conditions drawn from several previous studies. A prediction of turbulence based on biomass and velocity was also described, providing an important step toward predicting turbulence and bedload transport in canopies of real vegetation morphology.
Date issued
2021-10-27
URI
https://hdl.handle.net/1721.1/140351
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Geophysical Research Letters
Publisher
American Geophysical Union (AGU)
Citation
Zhao, T., & Nepf, H. M. (2021). Turbulence dictates bedload transport in vegetated channels without dependence on stem diameter and arrangement. Geophysical Research Letters, 48, e2021GL095316.
Version: Author's final manuscript
ISSN
0094-8276
1944-8007

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.