MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Partitioning metabolism between growth and product synthesis for coordinated production of wax esters in Acinetobacter baylyi ADP1

Author(s)
Santala, Suvi; Santala, Ville; Liu, Nian; Stephanopoulos, Gregory
Thumbnail
Download10.1002-bit.27740.pdf (1.512Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Microbial storage compounds, such as wax esters (WE), are potential high-value lipids for the production of specialty chemicals and medicines. Their synthesis, however, is strictly regulated and competes with cell growth, which leads to trade-offs between biomass and product formation. Here, we use metabolic engineering and synergistic substrate cofeeding to partition the metabolism of Acinetobacter baylyi ADP1 into two distinct modules, each dedicated to cell growth and WE biosynthesis, respectively. We first blocked the glyoxylate shunt and upregulated the WE synthesis pathway to direct the acetate substrate exclusively for WE synthesis, then we controlled the supply of gluconate so it could be used exclusively for cell growth and maintenance. We show that the two modules are functionally independent from each other, allowing efficient lipid accumulation while maintaining active cell growth. Our strategy resulted in 7.2- and 4.2-fold improvements in WE content and productivity, respectively, and the product titer was enhanced by 8.3-fold over the wild type strain. Notably, during a 24-h cultivation, a yield of 18% C-WE/C-total-substrates was achieved, being the highest reported for WE biosynthesis. This study provides a simple, yet powerful, means of controlling cellular operations and overcoming some of the fundamental challenges in microbial storage lipid production.
Date issued
2021-03-15
URI
https://hdl.handle.net/1721.1/140409
Department
Massachusetts Institute of Technology. Department of Chemical Engineering
Journal
Biotechnology and Bioengineering
Publisher
Wiley
Citation
Santala, S., Santala, V., Liu, N., & Stephanopoulos, G. (2021). Partitioning metabolism between growth and product synthesis for coordinated production of wax esters in Acinetobacter baylyi ADP1. Biotechnology and Bioengineering. 118, 2283– 2292.
Version: Author's final manuscript
ISSN
0006-3592
1097-0290

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.