Show simple item record

dc.contributor.authorBertsimas, Dimitris
dc.contributor.authorDunn, Jack
dc.contributor.authorKapelevich, Lea
dc.contributor.authorZhang, Rebecca
dc.date.accessioned2022-02-18T16:25:26Z
dc.date.available2022-02-18T16:25:26Z
dc.date.issued2021-07-08
dc.identifier.urihttps://hdl.handle.net/1721.1/140530
dc.description.abstractAbstract Prediction tasks in personalized medicine require models that combine accuracy and interpretability. We propose an integer optimization approach for building sparse regression models with enforced coordination, using data partitioned among leaves in a prediction tree. We show that the method recovers the true underlying relationship between observations and target variables in large-scale synthetic data in seconds. We apply our method to several real-world medical prediction problems and observe that the additional structure imposed provides a substantial gain in interpretability, at a low cost to accuracy.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11590-021-01770-9en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleSparse regression over clusters: SparCluren_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris, Dunn, Jack, Kapelevich, Lea and Zhang, Rebecca. 2021. "Sparse regression over clusters: SparClur."
dc.contributor.departmentSloan School of Management
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-02-17T04:18:16Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-02-17T04:18:16Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record