Show simple item record

dc.contributor.authorBu, Kaifeng
dc.contributor.authorKoh, Dax E.
dc.date.accessioned2022-02-23T14:05:05Z
dc.date.available2022-02-23T14:05:05Z
dc.date.issued2022-01-31
dc.identifier.urihttps://hdl.handle.net/1721.1/140600
dc.description.abstractAbstract We give an efficient algorithm to evaluate a certain class of exponential sums, namely the periodic, quadratic, multivariate half Gauss sums. We show that these exponential sums become $$\#{\mathsf {P}}$$ # P -hard to compute when we omit either the periodicity or quadraticity condition. We apply our results about these exponential sums to the classical simulation of quantum circuits, and give an alternative proof of the Gottesman–Knill theorem. We also explore a connection between these exponential sums and the Holant framework. In particular, we generalize the existing definition of affine signatures to arbitrary dimensions, and use our results about half Gauss sums to show that the Holant problem for the set of affine signatures is tractable.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00220-022-04320-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleClassical Simulation of Quantum Circuits by Half Gauss Sumsen_US
dc.typeArticleen_US
dc.identifier.citationBu, Kaifeng and Koh, Dax E. 2022. "Classical Simulation of Quantum Circuits by Half Gauss Sums."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-02-23T04:39:58Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-02-23T04:39:57Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record