Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/141069.2

Show simple item record

dc.contributor.authorYang, Hui
dc.contributor.authorWang, Tuo
dc.contributor.authorOehme, Daniel
dc.contributor.authorPetridis, Loukas
dc.contributor.authorHong, Mei
dc.contributor.authorKubicki, James D
dc.date.accessioned2022-03-08T20:28:58Z
dc.date.available2022-03-08T20:28:58Z
dc.date.issued2018
dc.identifier.urihttps://hdl.handle.net/1721.1/141069
dc.description.abstract© 2017, The Author(s). The doublet C4 peaks at ~ 85 and ~ 89 ppm in solid-state 13C NMR spectra of native cellulose have been attributed to signals of C4 atoms on the surface (solvent-exposed) and in the interior of microfibrils, designated as sC4 and iC4, respectively. The relative intensity ratios of sC4 and iC4 observed in NMR spectra of cellulose have been used to estimate the degree of crystallinity of cellulose and the number of glucan chains in cellulose microfibrils. However, the molecular structures of cellulose responsible for the specific surface and interior C4 peaks have not been positively confirmed. Using density functional theory (DFT) methods and structures produced from classical molecular dynamics simulations, we investigated how the following four factors affect 13C NMR chemical shifts in cellulose: conformations of exocyclic groups at C6 (tg, gt and gg), H2O molecules H-bonded on the surface of the microfibril, glycosidic bond angles (Φ, Ψ) and the distances between H4 and HO3 atoms. We focus on changes in the δ13C4 value because it is the most significant observable for the same C atom within the cellulose structure. DFT results indicate that different conformations of the exocyclic groups at C6 have the greatest influence on δ13C4 peak separation, while the other three factors have secondary effects that increase the spread of the calculated C4 interior and surface peaks.en_US
dc.language.isoen
dc.publisherSpringer Nature America, Incen_US
dc.relation.isversionof10.1007/S10570-017-1549-6en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringeren_US
dc.titleStructural factors affecting 13C NMR chemical shifts of cellulose: a computational studyen_US
dc.typeArticleen_US
dc.identifier.citationYang, Hui, Wang, Tuo, Oehme, Daniel, Petridis, Loukas, Hong, Mei et al. 2018. "Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study." Cellulose, 25 (1).
dc.relation.journalCelluloseen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-08T20:23:33Z
dspace.orderedauthorsYang, H; Wang, T; Oehme, D; Petridis, L; Hong, M; Kubicki, JDen_US
dspace.date.submission2022-03-08T20:23:35Z
mit.journal.volume25en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version