Show simple item record

dc.contributor.authorAlam, Mohammad Murshid
dc.contributor.authorJarvis, Cassie M
dc.contributor.authorHincapie, Robert
dc.contributor.authorMcKay, Craig S
dc.contributor.authorSchimer, Jiri
dc.contributor.authorSanhueza, Carlos A
dc.contributor.authorXu, Ke
dc.contributor.authorDiehl, Roger C
dc.contributor.authorFinn, MG
dc.contributor.authorKiessling, Laura L
dc.date.accessioned2022-03-09T18:05:20Z
dc.date.available2022-03-09T18:05:20Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/141096
dc.description.abstract© 2021 American Chemical Society. All rights reserved. Dendritic cells (DCs) are highly effective antigen-presenting cells that shape immune responses. Vaccines that deliver antigen to the DCs can harness their power. DC surface lectins recognize glycans not typically present on host tissue to facilitate antigen uptake and presentation. Vaccines that target these surface lectins should offer improved antigen delivery, but their efficacy will depend on how lectin targeting influences the T cell subtypes that result. We examined how antigen structure influences uptake and signaling from the C-type lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin or CD209). Virus-like particles (VLPs) were engineered from bacteriophage Qβ to present an array of mannoside ligands. The VLPs were taken up by DCs and efficiently trafficked to endosomes. The signaling that ensued depended on the ligand displayed on the VLP: only those particles densely functionalized with an aryl mannoside, Qβ-Man540, elicited DC maturation and induced the expression of the proinflammatory cytokines characteristic of a T helper type 1 (TH1)-like immune response. This effect was traced to differential binding to DC-SIGN at the acidic pH of the endosome. Mice immunized with a VLP bearing the aryl mannoside, and a peptide antigen (Qβ-Ova-Man540) had antigen-specific responses, including the production of CD4+T cells producing the activating cytokines interferon-γand tumor necrosis factor-α. A TH1 response is critical for intracellular pathogens (e.g., viruses) and cancer; thus, our data highlight the value of targeting DC lectins for antigen delivery and validate the utility of DC-targeted VLPs as vaccine vehicles that induce cellular immunity.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionof10.1021/ACSNANO.0C03023en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcePMCen_US
dc.titleGlycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responsesen_US
dc.typeArticleen_US
dc.identifier.citationAlam, Mohammad Murshid, Jarvis, Cassie M, Hincapie, Robert, McKay, Craig S, Schimer, Jiri et al. 2021. "Glycan-Modified Virus-like Particles Evoke T Helper Type 1-like Immune Responses." ACS Nano, 15 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.relation.journalACS Nanoen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-09T17:45:27Z
dspace.orderedauthorsAlam, MM; Jarvis, CM; Hincapie, R; McKay, CS; Schimer, J; Sanhueza, CA; Xu, K; Diehl, RC; Finn, MG; Kiessling, LLen_US
dspace.date.submission2022-03-09T17:45:29Z
mit.journal.volume15en_US
mit.journal.issue1en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record