Show simple item record

dc.contributor.authorCekić, Mihajlo
dc.contributor.authorDelarue, Benjamin
dc.contributor.authorDyatlov, Semyon
dc.contributor.authorPaternain, Gabriel P.
dc.date.accessioned2022-03-14T14:00:10Z
dc.date.available2022-03-14T14:00:10Z
dc.date.issued2022-03-11
dc.identifier.urihttps://hdl.handle.net/1721.1/141149
dc.description.abstractAbstract We show that for a generic conformal metric perturbation of a compact hyperbolic 3-manifold  $$\Sigma $$ Σ with Betti number $$b_1$$ b 1 , the order of vanishing of the Ruelle zeta function at zero equals $$4-b_1$$ 4 - b 1 , while in the hyperbolic case it is equal to $$4-2b_1$$ 4 - 2 b 1 . This is in contrast to the 2-dimensional case where the order of vanishing is a topological invariant. The proof uses the microlocal approach to dynamical zeta functions, giving a geometric description of generalized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case and using first variation for the perturbation. To show that the first variation is generically nonzero we introduce a new identity relating pushforwards of products of resonant and coresonant 2-forms on the sphere bundle $$S\Sigma $$ S Σ with harmonic 1-forms on  $$\Sigma $$ Σ .en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00222-022-01108-xen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleThe Ruelle zeta function at zero for nearly hyperbolic 3-manifoldsen_US
dc.typeArticleen_US
dc.identifier.citationCekić, Mihajlo, Delarue, Benjamin, Dyatlov, Semyon and Paternain, Gabriel P. 2022. "The Ruelle zeta function at zero for nearly hyperbolic 3-manifolds."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-13T04:13:10Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-03-13T04:13:10Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record