Show simple item record

dc.contributor.authorShi, Jiaojian
dc.contributor.authorGao, Frank Y
dc.contributor.authorZhang, Zhuquan
dc.contributor.authorUtzat, Hendrik
dc.contributor.authorBarotov, Ulugbek
dc.contributor.authorFarahvash, Ardavan
dc.contributor.authorHan, Jinchi
dc.contributor.authorDeschamps, Jude
dc.contributor.authorBaik, Chan-Wook
dc.contributor.authorCho, Kyung Sang
dc.contributor.authorBulović, Vladimir
dc.contributor.authorWillard, Adam P
dc.contributor.authorBaldini, Edoardo
dc.contributor.authorGedik, Nuh
dc.contributor.authorBawendi, Moungi G
dc.contributor.authorNelson, Keith A
dc.date.accessioned2022-03-14T18:41:47Z
dc.date.available2022-03-14T18:41:47Z
dc.date.issued2022-02-23
dc.identifier.urihttps://hdl.handle.net/1721.1/141169
dc.description.abstractThe continuous and concerted development of colloidal quantum dot light-emitting diodes over the past two decades has established them as a bedrock technology for the next generation of displays. However, a fundamental issue that limits the performance of these devices is the quenching of photoluminescence due to excess charges from conductive charge transport layers. Although device designs have leveraged various workarounds, doing so often comes at the cost of limiting efficient charge injection. Here we demonstrate that high-field terahertz (THz) pulses can dramatically brighten quenched QDs on metallic surfaces, an effect that persists for minutes after THz irradiation. This phenomenon is attributed to the ability of the THz field to remove excess charges, thereby reducing trion and nonradiative Auger recombination. Our findings show that THz technologies can be used to suppress and control such undesired nonradiative decay, potentially in a variety of luminescent materials for future device applications.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionof10.1021/acs.nanolett.1c04873en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleTerahertz Field-Induced Reemergence of Quenched Photoluminescence in Quantum Dotsen_US
dc.typeArticleen_US
dc.identifier.citationShi, Jiaojian, Gao, Frank Y, Zhang, Zhuquan, Utzat, Hendrik, Barotov, Ulugbek et al. 2022. "Terahertz Field-Induced Reemergence of Quenched Photoluminescence in Quantum Dots." Nano Letters, 22 (4).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalNano Lettersen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-03-14T18:29:33Z
dspace.orderedauthorsShi, J; Gao, FY; Zhang, Z; Utzat, H; Barotov, U; Farahvash, A; Han, J; Deschamps, J; Baik, C-W; Cho, KS; Bulović, V; Willard, AP; Baldini, E; Gedik, N; Bawendi, MG; Nelson, KAen_US
dspace.date.submission2022-03-14T18:29:39Z
mit.journal.volume22en_US
mit.journal.issue4en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record