Show simple item record

dc.contributor.authorOgunbo, J. N.
dc.date.accessioned2022-03-15T14:29:47Z
dc.date.available2022-03-15T14:10:39Z
dc.date.available2022-03-15T14:29:47Z
dc.date.issued2019-05
dc.date.submitted2019-03
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/1721.1/141181.2
dc.description.abstract©2019. The Authors. Joint inversions of coincident geophysical data are usually constrained to produce more reliable subsurface models. Structural, petrophysical, model parameter correlation, empirical, and transforms are some of the published constraints. The Gramian constraint provides a broad mathematical framework for implementing the aforementioned constraints. The Gramian constraint is formed from the determinant of the inner products of the model parameters involved. Previous works have used the Gramian constraint to invert multimodal parameters of different geophysical methods. But there has not been any extension of Gramian-constrained joint inversion to mono-model parameter from similar geophysical methods, for example, a similar conductivity or resistivity model from time- and frequency-domain airborne electromagnetic methods. I implement the Gramian-constrained joint inversion of time- and frequency-domain airborne EM (AEM) data. This implementation allows the Gramian constraint to enhance the linear correlation of the model parameter between the two methods as the number of iterations increases. Improvement of the final joint inversion results over the standalone models is noticeable for both 3% noise-contaminated synthetic and field data experiments. The field data jointly inverted are the high moment time-domain SkyTEM data and frequency-domain RESOLVE helicopter EM data acquired over the salinized Bookpurnong Irrigation District in South Australia in 2006 and 2008, respectively.en_US
dc.language.isoen
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1029/2019ea000605en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceWileyen_US
dc.titleMono‐Model Parameter Joint Inversion by Gramian Constraints: EM Methods Examplesen_US
dc.typeArticleen_US
dc.identifier.citationOgunbo, JN. 2019. "Mono-Model Parameter Joint Inversion by Gramian Constraints: EM Methods Examples." Earth and Space Science, 6 (5).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Earth Resources Laboratory
dc.relation.journalEarth and Space Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-15T14:05:04Z
dspace.orderedauthorsOgunbo, JNen_US
dspace.date.submission2022-03-15T14:05:06Z
mit.journal.volume6en_US
mit.journal.issue5en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version