Show simple item record

dc.contributor.authorBabaee, H.
dc.contributor.authorBastidas, C.
dc.contributor.authorDeFilippo, M.
dc.contributor.authorChryssostomidis, C.
dc.contributor.authorKarniadakis, G. E.
dc.date.accessioned2022-03-15T14:41:51Z
dc.date.available2022-03-15T14:20:21Z
dc.date.available2022-03-15T14:41:51Z
dc.date.issued2020-02
dc.date.submitted2019-12
dc.identifier.issn2333-5084
dc.identifier.urihttps://hdl.handle.net/1721.1/141182.2
dc.description.abstract©2020. The Authors. We present a multifidelity framework to analyze and hindcast predictions of sea surface temperature (SST) in the Massachusetts and Cape Cod Bays, which is a critical area for its ecological significance, sustaining fisheries and the blue economy of the region. Currently, there is a lack of accurate and continuous SST prediction for this region due to the high cost of collecting the samples (e.g., cost of buoys, maintenance, severe weather). In this work, we use SST data from satellite images and in situ measurements collected by the Massachusetts Water Resources Authority to develop multifidelity forecasting models. This multifidelity framework is based on autoregressive Gaussian process schemes that systematically exploit all correlations between data from multiple heterogeneous spatiotemporal sources with various degrees of fidelity. This enables us to obtain implicitly their functional relationships and, at the same time, quantify the uncertainty of the data-driven predictions. Specifically, in the current work, we develop and validate progressively more complex models, including temporal, spatial, and spatiotemporal multifidelity hindcast predictions of SST in the Massachusetts and Cape Cod Bays. Together with these predictions, we present for the first time uncertainty maps for the region.en_US
dc.language.isoen
dc.publisherAmerican Geophysical Union (AGU)en_US
dc.relation.isversionofhttp://dx.doi.org/10.1029/2019ea000954en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWileyen_US
dc.titleA Multifidelity Framework and Uncertainty Quantification for Sea Surface Temperature in the Massachusetts and Cape Cod Baysen_US
dc.typeArticleen_US
dc.identifier.citationBabaee, H, Bastidas, C, DeFilippo, M, Chryssostomidis, C and Karniadakis, GE. 2020. "A Multifidelity Framework and Uncertainty Quantification for Sea Surface Temperature in the Massachusetts and Cape Cod Bays." Earth and Space Science, 7 (2).en_US
dc.contributor.departmentMassachusetts Institute of Technology. Sea Grant College Program
dc.relation.journalEarth and Space Scienceen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-15T14:10:02Z
dspace.orderedauthorsBabaee, H; Bastidas, C; DeFilippo, M; Chryssostomidis, C; Karniadakis, GEen_US
dspace.date.submission2022-03-15T14:10:08Z
mit.journal.volume7en_US
mit.journal.issue2en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version