MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Subauroral and Polar Traveling Ionospheric Disturbances During the 7–9 September 2017 Storms

Author(s)
Zhang, Shun-Rong; Erickson, Philip J; Coster, Anthea J; Rideout, William; Vierinen, Juha; Jonah, Olusegun; Goncharenko, Larisa P; ... Show more Show less
Thumbnail
DownloadPublished version (70.39Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
©2019. The Authors. This study provides new scenarios for storm time traveling ionospheric disturbance excitation and subsequent propagation at subauroral and polar latitudes. We used ground-based total electron content observations from Global Navigation Satellite System receivers combined with wide field, subauroral ionospheric plasma parameters measured with the Millstone Hill Incoherent Scatter Radar during strong September 2017 geospace storms. Observations provide the first evidence of significant influences on traveling ionospheric disturbance (TID) propagation and excitation caused by the presence of large subauroral polarization stream flow channels. Simultaneous large- and medium-scale TIDs evolved during the event in a broad subauroral and midlatitude area near dusk. Similar concurrent TIDs occurred near dawn sectors as well during a period of sustained southward Bz. Medium-scale TIDs at subauroral and midlatitudes had wave fronts aligned northwest-southeast near dusk, and northeast-southwest near dawn. These wave fronts were highly correlated with the direction of storm time large zonal plasma drift enhancements at these latitudes. At high latitudes, unexpected, predominant, and persistent storm time TIDs were identified with 2000+ km zonal wave fronts and 15% total electron content perturbation amplitudes, moving in transpolar propagation pathways from the dayside into the nightside. This propagation direction in the polar region was opposite to the normal assumption that TIDs originated in the nightside auroral region. Results suggest that significant dayside sources, such as cusp regions, can be efficient in generating transpolar TIDs during geospace storm intervals.
Date issued
2019
URI
https://hdl.handle.net/1721.1/141186
Department
Haystack Observatory
Journal
Space Weather
Publisher
American Geophysical Union (AGU)
Citation
Zhang, Shun-Rong, Erickson, Philip J, Coster, Anthea J, Rideout, William, Vierinen, Juha et al. 2019. "Subauroral and Polar Traveling Ionospheric Disturbances During the 7–9 September 2017 Storms." Space Weather, 17 (12).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.