Show simple item record

dc.contributor.authorRíos, Carlos
dc.contributor.authorZhang, Yifei
dc.contributor.authorShalaginov, Mikhail Y
dc.contributor.authorDeckoff-Jones, Skylar
dc.contributor.authorWang, Haozhe
dc.contributor.authorAn, Sensong
dc.contributor.authorZhang, Hualiang
dc.contributor.authorKang, Myungkoo
dc.contributor.authorRichardson, Kathleen A
dc.contributor.authorRoberts, Christopher
dc.contributor.authorChou, Jeffrey B
dc.contributor.authorLiberman, Vladimir
dc.contributor.authorVitale, Steven A
dc.contributor.authorKong, Jing
dc.contributor.authorGu, Tian
dc.contributor.authorHu, Juejun
dc.date.accessioned2022-03-16T15:57:52Z
dc.date.available2022-03-16T15:57:52Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/141218
dc.description.abstractReconfigurable photonic systems featuring minimal power consumption are crucial for integrated optical devices in real-world technology. Current active devices available in foundries, however, use volatile methods to modulate light, requiring a constant supply of power and significant form factors. Essential aspects to overcoming these issues are the development of nonvolatile optical reconfiguration techniques which are compatible with on-chip integration with different photonic platforms and do not disrupt their optical performances. In this paper, a solution is demonstrated using an optoelectronic framework for nonvolatile tunable photonics that employs undoped-graphene microheaters to thermally and reversibly switch the optical phase-change material Ge$_2$Sb$_2$Se$_4$Te$_1$ (GSST). An in-situ Raman spectroscopy method is utilized to demonstrate, in real-time, reversible switching between four different levels of crystallinity. Moreover, a 3D computational model is developed to precisely interpret the switching characteristics, and to quantify the impact of current saturation on power dissipation, thermal diffusion, and switching speed. This model is used to inform the design of nonvolatile active photonic devices; namely, broadband Si$_3$N$_4$ integrated photonic circuits with small form-factor modulators and reconfigurable metasurfaces displaying 2$\pi$ phase coverage through neural-network-designed GSST meta-atoms. This framework will enable scalable, low-loss nonvolatile applications across a diverse range of photonics platforms.en_US
dc.language.isoen
dc.publisherWileyen_US
dc.relation.isversionof10.1002/ADPR.202000034en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceWileyen_US
dc.titleMulti‐level Electro‐thermal Switching of Optical Phase‐Change Materials Using Grapheneen_US
dc.typeArticleen_US
dc.identifier.citationRíos, Carlos, Zhang, Yifei, Shalaginov, Mikhail Y, Deckoff-Jones, Skylar, Wang, Haozhe et al. 2021. "Multi‐level Electro‐thermal Switching of Optical Phase‐Change Materials Using Graphene." Advanced Photonics Research, 2 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Materials Science and Engineering
dc.contributor.departmentLincoln Laboratory
dc.relation.journalAdvanced Photonics Researchen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-16T15:51:12Z
dspace.orderedauthorsRíos, C; Zhang, Y; Shalaginov, MY; Deckoff-Jones, S; Wang, H; An, S; Zhang, H; Kang, M; Richardson, KA; Roberts, C; Chou, JB; Liberman, V; Vitale, SA; Kong, J; Gu, T; Hu, Jen_US
dspace.date.submission2022-03-16T15:51:14Z
mit.journal.volume2en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record