MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predator Dormancy is a Stable Adaptive Strategy due to Parrondo's Paradox

Author(s)
Tan, ZX; Koh, JM; Koonin, EV; Cheong, KH
Thumbnail
DownloadPublished version (1.794Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Many predators produce dormant offspring to escape harsh environmental conditions, but the evolutionary stability of this adaptation has not been fully explored. Like seed banks in plants, dormancy provides a stable competitive advantage when seasonal variations occur, because the persistence of dormant forms under harsh conditions compensates for the increased cost of producing dormant offspring. However, dormancy also exists in environments with minimal abiotic variation—an observation not accounted for by existing theory. Here it is demonstrated that dormancy can out-compete perennial activity under conditions of extensive prey density fluctuation caused by overpredation. It is shown that at a critical level of prey density fluctuations, dormancy becomes an evolutionarily stable strategy. This is interpreted as a manifestation of Parrondo's paradox: although neither the active nor dormant forms of a dormancy-capable predator can individually out-compete a perennially active predator, alternating between these two losing strategies can paradoxically result in a winning strategy. Parrondo's paradox may thus explain the widespread success of quiescent behavioral strategies such as dormancy, suggesting that dormancy emerges as a natural evolutionary response to the self-destructive tendencies of overpredation and related biological phenomena.
Date issued
2020-02-01
URI
https://hdl.handle.net/1721.1/141222
Department
SUTD-MIT International Design Centre (IDC)
Journal
Advanced Science
Publisher
Wiley
Citation
Tan, ZX, Koh, JM, Koonin, EV and Cheong, KH. 2020. "Predator Dormancy is a Stable Adaptive Strategy due to Parrondo's Paradox." Advanced Science, 7 (3).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.