Show simple item record

dc.contributor.authorSung, Youngkyu
dc.contributor.authorVepsäläinen, Antti
dc.contributor.authorBraumüller, Jochen
dc.contributor.authorYan, Fei
dc.contributor.authorWang, Joel I-Jan
dc.contributor.authorKjaergaard, Morten
dc.contributor.authorWinik, Roni
dc.contributor.authorKrantz, Philip
dc.contributor.authorBengtsson, Andreas
dc.contributor.authorMelville, Alexander J.
dc.contributor.authorNiedzielski, Bethany M.
dc.contributor.authorSchwartz, Mollie E.
dc.contributor.authorKim, David K.
dc.contributor.authorYoder, Jonilyn L.
dc.contributor.authorOrlando, Terry P.
dc.contributor.authorGustavsson, Simon
dc.contributor.authorOliver, William D.
dc.date.accessioned2022-03-17T11:53:47Z
dc.date.available2022-03-17T11:53:47Z
dc.date.issued2021-02-11
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/1721.1/141243
dc.description.abstractAbstract System noise identification is crucial to the engineering of robust quantum systems. Although existing quantum noise spectroscopy (QNS) protocols measure an aggregate amount of noise affecting a quantum system, they generally cannot distinguish between the underlying processes that contribute to it. Here, we propose and experimentally validate a spin-locking-based QNS protocol that exploits the multi-level energy structure of a superconducting qubit to achieve two notable advances. First, our protocol extends the spectral range of weakly anharmonic qubit spectrometers beyond the present limitations set by their lack of strong anharmonicity. Second, the additional information gained from probing the higher-excited levels enables us to identify and distinguish contributions from different underlying noise mechanisms.en_US
dc.description.sponsorshipDepartment of Defense (DoD)en_US
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-021-21098-3en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.subjectGeneral Physics and Astronomyen_US
dc.subjectGeneral Biochemistry, Genetics and Molecular Biologyen_US
dc.subjectGeneral Chemistryen_US
dc.titleMulti-level quantum noise spectroscopyen_US
dc.typeArticleen_US
dc.identifier.citationSung, Y., Vepsäläinen, A., Braumüller, J. et al. Multi-level quantum noise spectroscopy. Nat Commun 12, 967 (2021)en_US
dc.contributor.departmentMassachusetts Institute of Technology. Research Laboratory of Electronics
dc.contributor.departmentMassachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
dc.contributor.departmentLincoln Laboratory
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.identifier.doi10.1038/s41467-021-21098-3
dspace.date.submission2022-03-16T22:49:15Z
mit.journal.volume12en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record