MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Competitive dCas9 binding as a mechanism for transcriptional control

Author(s)
Anderson, Daniel A; Voigt, Christopher A
Thumbnail
DownloadPublished version (1015.Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Catalytically dead Cas9 (dCas9) is a programmable transcription factor that can be targeted to promoters through the design of small guide RNAs (sgRNAs), where it can function as an activator or repressor. Natural promoters use overlapping binding sites as a mechanism for signal integration, where the binding of one can block, displace, or augment the activity of the other. Here, we implemented this strategy in Escherichia coli using pairs of sgRNAs designed to repress and then derepress transcription through competitive binding. When designed to target a promoter, this led to 27-fold repression and complete derepression. This system was also capable of ratiometric input comparison over two orders of magnitude. Additionally, we used this mechanism for promoter sequence-independent control by adopting it for elongation control, achieving 8-fold repression and 4-fold derepression. This work demonstrates a new genetic control mechanism that could be used to build analog circuit or implement cis-regulatory logic on CRISPRi-targeted native genes.
Date issued
2021-11
URI
https://hdl.handle.net/1721.1/141264
Department
Massachusetts Institute of Technology. Synthetic Biology Center
Journal
Molecular Systems Biology
Publisher
EMBO
Citation
Anderson, Daniel A and Voigt, Christopher A. 2021. "Competitive dCas9 binding as a mechanism for transcriptional control." Molecular Systems Biology, 17 (11).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.