Show simple item record

dc.contributor.authorZech, Jakob
dc.contributor.authorMarzouk, Youssef
dc.date.accessioned2022-03-21T12:41:36Z
dc.date.available2022-03-21T12:41:36Z
dc.date.issued2022-03-17
dc.identifier.urihttps://hdl.handle.net/1721.1/141312
dc.description.abstractAbstract For two probability measures $${\rho }$$ ρ and $${\pi }$$ π on $$[-1,1]^{{\mathbb {N}}}$$ [ - 1 , 1 ] N we investigate the approximation of the triangular Knothe–Rosenblatt transport $$T:[-1,1]^{{\mathbb {N}}}\rightarrow [-1,1]^{{\mathbb {N}}}$$ T : [ - 1 , 1 ] N → [ - 1 , 1 ] N that pushes forward $${\rho }$$ ρ to $${\pi }$$ π . Under suitable assumptions, we show that T can be approximated by rational functions without suffering from the curse of dimension. Our results are applicable to posterior measures arising in certain inference problems where the unknown belongs to an (infinite dimensional) Banach space. In particular, we show that it is possible to efficiently approximately sample from certain high-dimensional measures by transforming a lower-dimensional latent variable.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00365-022-09570-9en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleSparse Approximation of Triangular Transports, Part II: The Infinite-Dimensional Caseen_US
dc.typeArticleen_US
dc.identifier.citationZech, Jakob and Marzouk, Youssef. 2022. "Sparse Approximation of Triangular Transports, Part II: The Infinite-Dimensional Case."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Aeronautics and Astronautics
dc.contributor.departmentMassachusetts Institute of Technology. Center for Computational Science and Engineering
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-20T04:14:59Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2022-03-20T04:14:58Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record