Show simple item record

dc.contributor.authorMarshall-Roth, Travis
dc.contributor.authorLibretto, Nicole J
dc.contributor.authorWrobel, Alexandra T
dc.contributor.authorAnderton, Kevin J
dc.contributor.authorPegis, Michael L
dc.contributor.authorRicke, Nathan D
dc.contributor.authorVoorhis, Troy Van
dc.contributor.authorMiller, Jeffrey T
dc.contributor.authorSurendranath, Yogesh
dc.date.accessioned2022-03-21T15:08:09Z
dc.date.available2022-03-21T15:08:09Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/141324
dc.description.abstract© 2020, The Author(s). Iron- and nitrogen-doped carbon (Fe-N-C) materials are leading candidates to replace platinum catalysts for the oxygen reduction reaction (ORR) in fuel cells; however, their active site structures remain poorly understood. A leading postulate is that the iron-containing active sites exist primarily in a pyridinic Fe-N4 ligation environment, yet, molecular model catalysts generally feature pyrrolic coordination. Herein, we report a molecular pyridinic hexaazacyclophane macrocycle, (phen2N2)Fe, and compare its spectroscopic, electrochemical, and catalytic properties for ORR to a typical Fe-N-C material and prototypical pyrrolic iron macrocycles. N 1s XPS and XAS signatures for (phen2N2)Fe are remarkably similar to those of Fe-N-C. Electrochemical studies reveal that (phen2N2)Fe has a relatively high Fe(III/II) potential with a correlated ORR onset potential within 150 mV of Fe-N-C. Unlike the pyrrolic macrocycles, (phen2N2)Fe displays excellent selectivity for four-electron ORR, comparable to Fe-N-C materials. The aggregate spectroscopic and electrochemical data demonstrate that (phen2N2)Fe is a more effective model of Fe-N-C active sites relative to the pyrrolic iron macrocycles, thereby establishing a new molecular platform that can aid understanding of this important class of catalytic materials.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-020-18969-6en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleA pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalystsen_US
dc.typeArticleen_US
dc.identifier.citationMarshall-Roth, Travis, Libretto, Nicole J, Wrobel, Alexandra T, Anderton, Kevin J, Pegis, Michael L et al. 2020. "A pyridinic Fe-N4 macrocycle models the active sites in Fe/N-doped carbon electrocatalysts." Nature Communications, 11 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Chemistry
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-21T14:53:37Z
dspace.orderedauthorsMarshall-Roth, T; Libretto, NJ; Wrobel, AT; Anderton, KJ; Pegis, ML; Ricke, ND; Voorhis, TV; Miller, JT; Surendranath, Yen_US
dspace.date.submission2022-03-21T14:53:39Z
mit.journal.volume11en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record