Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/141333.2

Show simple item record

dc.date.accessioned2022-03-21T18:35:23Z
dc.date.available2022-03-21T18:35:23Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/141333
dc.description.abstract© 2020 U.S. Government. Specialized computational chemistry packages have permanently reshaped the landscape of chemical and materials science by providing tools to support and guide experimental efforts and for the prediction of atomistic and electronic properties. In this regard, electronic structure packages have played a special role by using first-principle-driven methodologies to model complex chemical and materials processes. Over the past few decades, the rapid development of computing technologies and the tremendous increase in computational power have offered a unique chance to study complex transformations using sophisticated and predictive many-body techniques that describe correlated behavior of electrons in molecular and condensed phase systems at different levels of theory. In enabling these simulations, novel parallel algorithms have been able to take advantage of computational resources to address the polynomial scaling of electronic structure methods. In this paper, we briefly review the NWChem computational chemistry suite, including its history, design principles, parallel tools, current capabilities, outreach, and outlook.en_US
dc.language.isoen
dc.publisherAIP Publishingen_US
dc.relation.isversionof10.1063/5.0004997en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceOther repositoryen_US
dc.titleNWChem: Past, present, and futureen_US
dc.typeArticleen_US
dc.identifier.citation2020. "NWChem: Past, present, and future." The Journal of Chemical Physics, 152 (18).
dc.relation.journalThe Journal of Chemical Physicsen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-21T18:30:12Z
dspace.orderedauthorsAprà, E; Bylaska, EJ; de Jong, WA; Govind, N; Kowalski, K; Straatsma, TP; Valiev, M; van Dam, HJJ; Alexeev, Y; Anchell, J; Anisimov, V; Aquino, FW; Atta-Fynn, R; Autschbach, J; Bauman, NP; Becca, JC; Bernholdt, DE; Bhaskaran-Nair, K; Bogatko, S; Borowski, P; Boschen, J; Brabec, J; Bruner, A; Cauët, E; Chen, Y; Chuev, GN; Cramer, CJ; Daily, J; Deegan, MJO; Dunning, TH; Dupuis, M; Dyall, KG; Fann, GI; Fischer, SA; Fonari, A; Früchtl, H; Gagliardi, L; Garza, J; Gawande, N; Ghosh, S; Glaesemann, K; Götz, AW; Hammond, J; Helms, V; Hermes, ED; Hirao, K; Hirata, S; Jacquelin, M; Jensen, L; Johnson, BG; Jónsson, H; Kendall, RA; Klemm, M; Kobayashi, R; Konkov, V; Krishnamoorthy, S; Krishnan, M; Lin, Z; Lins, RD; Littlefield, RJ; Logsdail, AJ; Lopata, K; Ma, W; Marenich, AV; Martin del Campo, J; Mejia-Rodriguez, D; Moore, JE; Mullin, JM; Nakajima, T; Nascimento, DR; Nichols, JA; Nichols, PJ; Nieplocha, J; Otero-de-la-Roza, A; Palmer, B; Panyala, A; Pirojsirikul, T; Peng, B; Peverati, R; Pittner, J; Pollack, L; Richard, RM; Sadayappan, P; Schatz, GC; Shelton, WA; Silverstein, DW; Smith, DMA; Soares, TA; Song, D; Swart, M; Taylor, HL; Thomas, GS; Tipparaju, V; Truhlar, DG; Tsemekhman, K; Van Voorhis, T; Vázquez-Mayagoitia, Á; Verma, P; Villa, O; Vishnu, A; Vogiatzis, KD; Wang, D; Weare, JH; Williamson, MJ; Windus, TL; Woliński, K; Wong, AT; Wu, Q; Yang, C; Yu, Q; Zacharias, M; Zhang, Z; Zhao, Y; Harrison, RJen_US
dspace.date.submission2022-03-21T18:30:16Z
mit.journal.volume152en_US
mit.journal.issue18en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version