MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

To Expedite Roadway Identification and Damage Assessment in LiDAR 3D Imagery for Disaster Relief Public Assistance

Author(s)
Mehta, Sharad; Peach, John; Weinert, Andrew
Thumbnail
Downloadinfrastructures-07-00039.pdf (7.527Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Aerial surveys using LiDAR systems can play a vital role in the quantitative assessment of infrastructure damage caused by hurricanes, floods, and other natural disasters. GmAPD LiDAR provides high-resolution 3D point-cloud data which enables the surveyor to take accurate measurements of damages to roads, buildings, communication towers, power lines, etc. Due to the high point cloud density, a very large volume of data is generated during an aerial survey. The data collected during the airborne imaging is post-processed with calibration, geo-registration, and segmentation. Albeit very accurate, extracting useful information from this data is a slow and laborious process. For disaster response, methods of automating this process have spurred the development of simple, fast algorithms that can be used to recognize physical structures from the point-cloud data that can later be assessed for structural damage. In this paper, we describe an efficient algorithm to extract roadways from a massive Lidar data-set to assist the Federal Emergency Management Agency (FEMA) in assessing road conditions as a step toward helping surveyors expedite a quantitative assessment of road damages for providing and distributing public assistance for disaster relief.
Date issued
2022-03-11
URI
https://hdl.handle.net/1721.1/141365
Department
Lincoln Laboratory
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Infrastructures 7 (3): 39 (2022)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.