| dc.contributor.author | Neguț, Andrei | |
| dc.date.accessioned | 2022-03-28T12:05:36Z | |
| dc.date.available | 2022-03-28T12:05:36Z | |
| dc.date.issued | 2022-03-25 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/141373 | |
| dc.description.abstract | We consider the PBW basis of the quantum toroidal algebra of gln, which was developed in Neguț (Adv. Math. 372, 2020), and prove commutation relations between its generators akin to the ones studied in Burban and Schiffmann (Duke Math. J. 161(7):1171–1231, 2012) for n = 1. This gives rise to a new presentation of the quantum toroidal algebra of type A. | en_US |
| dc.publisher | Springer US | en_US |
| dc.relation.isversionof | https://doi.org/10.1007/s00031-022-09696-x | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Springer US | en_US |
| dc.title | The PBW Basis of Uq,q¯¯¯(gl¨n) | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Neguț, A. The PBW Basis of Uq,q¯¯¯(gl¨n). Transformation Groups (2022). | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.relation.journal | Transformation Groups | en_US |
| dc.identifier.mitlicense | PUBLISHER_CC | |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2022-03-27T03:12:06Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | The Author(s) | |
| dspace.embargo.terms | N | |
| dspace.date.submission | 2022-03-27T03:12:06Z | |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |