Show simple item record

dc.contributor.authorJi, Weiqi
dc.contributor.authorYang, Tianwei
dc.contributor.authorRen, Zhuyin
dc.contributor.authorDeng, Sili
dc.date.accessioned2022-03-30T13:00:19Z
dc.date.available2022-03-30T13:00:19Z
dc.date.issued2020
dc.identifier.urihttps://hdl.handle.net/1721.1/141395
dc.description.abstract© 2020 The sensitivities of turbulent combustion simulations to chemical kinetic parameters can be analyzed to understand the controlling reactions in turbulent flames and to quantify the uncertainties in simulations. However, computing the sensitivity of turbulent combustion simulations to a large number of kinetic parameters is still challenging. A promising approach is to estimate the sensitivity from laminar flames, especially for cases where the flamelet model is applicable. Under these conditions, the underlying hypothesis is that the sensitivity direction of the flamelet profiles is independent of the strain rate and the flame coordinate, which is the progress variable for premixed flames. In the present work, this hypothesis was tested in laminar premixed counterflow flames. We first studied the sensitivity directions of two extreme cases, the near-extinction strained flames and the freely propagating unstretched flames. It was found that the sensitivity directions of the extinction strain rate and the laminar flame speed are aligned with each other for various fuels, equivalence ratios, and pressures. We then studied the dependence of the sensitivity direction of the maximum flame temperature on the strain rate as well as the dependence of the sensitivity direction of the species profiles on the progress variable. It was found that the sensitivity direction of maximum temperature was largely independent of the strain rate. Moreover, the sensitivity directions of the temperature and species profiles were independent of the progress variable, and they were all similar to the sensitivity direction of the extinction strain rate. These findings suggest that there is a universal sensitivity direction for turbulent premixed flames and the direction can be estimated by the sensitivity direction of extinction strain rate. These conclusions will enable efficient sensitivity analysis of turbulent combustion simulations when the hypothesis is valid.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/J.COMBUSTFLAME.2020.06.027en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceProf. Sili Deng via Elizabeth Kuhlmanen_US
dc.titleDependence of kinetic sensitivity direction in premixed flamesen_US
dc.typeArticleen_US
dc.identifier.citationJi, Weiqi, Yang, Tianwei, Ren, Zhuyin and Deng, Sili. 2020. "Dependence of kinetic sensitivity direction in premixed flames." Combustion and Flame, 220.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineering
dc.relation.journalCombustion and Flameen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-03-30T12:56:25Z
dspace.orderedauthorsJi, W; Yang, T; Ren, Z; Deng, Sen_US
dspace.date.submission2022-03-30T12:56:27Z
mit.journal.volume220en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record