MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A NICER look at thermonuclear X-ray bursts from Aql X-1

Author(s)
Güver, Tolga; Boztepe, Tuğba; Ballantyne, DR; Bostancı, Z Funda; Bult, Peter; Jaisawal, Gaurava K; Göğüş, Ersin; Strohmayer, Tod E; Altamirano, Diego; Guillot, Sebastien; Chakrabarty, Deepto; ... Show more Show less
Thumbnail
DownloadAccepted version (2.480Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:title>ABSTRACT</jats:title> <jats:p>We present spectral and temporal properties of all the thermonuclear X-ray bursts observed from Aql X-1 by the Neutron Star Interior and Composition Explorer (NICER) between 2017 July and 2021 April. This is the first systematic investigation of a large sample of type I X-ray bursts from Aql X-1 with improved sensitivity at low energies. We detect 22 X-ray bursts including two short recurrence burst events in which the separation was only 451 s and 496 s. We perform time resolved spectroscopy of the bursts using the fixed and scaled background (fa method) approaches. We show that the use of a scaling factor to the pre-burst emission is the statistically preferred model in about 68 per cent of all the spectra compared to the fixed background approach. Typically the fa values are clustered around 1–3, but can reach up to 11 in a burst where photospheric radius expansion is observed. Such fa values indicate a very significant increase in the pre-burst emission especially at around the peak flux moments of the bursts. We show that the use of the fa factor alters the best-fitting spectral parameters of the burst emission. Finally, we employed a reflection model instead of scaling the pre-burst emission. We show that reflection models also do fit the spectra and improve the goodness of the fits. In all cases, we see that the disc is highly ionized by the burst emission and the fraction of the reprocessed emission to the incident burst flux is typically clustered around 20 per cent.</jats:p>
Date issued
2021-12-30
URI
https://hdl.handle.net/1721.1/141437
Department
MIT Kavli Institute for Astrophysics and Space Research
Journal
Monthly Notices of the Royal Astronomical Society
Publisher
Oxford University Press (OUP)
Citation
Güver, Tolga, Boztepe, Tuğba, Ballantyne, DR, Bostancı, Z Funda, Bult, Peter et al. 2021. "A NICER look at thermonuclear X-ray bursts from Aql X-1." Monthly Notices of the Royal Astronomical Society, 510 (2).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.