MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Randomized probe imaging through deep k-learning

Author(s)
Guo, Zhen; Levitan, Abraham; Barbastathis, George; Comin, Riccardo
Thumbnail
DownloadPublished version (7.995Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Randomized probe imaging (RPI) is a single-frame diffractive imaging method that uses highly randomized light to reconstruct the spatial features of a scattering object. The reconstruction process, known as phase retrieval, aims to recover a unique solution for the object without measuring the far-field phase information. Typically, reconstruction is done via time-consuming iterative algorithms. In this work, we propose a fast and efficient deep learning based method to reconstruct phase objects from RPI data. The method, which we call deep k-learning, applies the physical propagation operator to generate an approximation of the object as an input to the neural network. This way, the network no longer needs to parametrize the far-field diffraction physics, dramatically improving the results. Deep k-learning is shown to be computationally efficient and robust to Poisson noise. The advantages provided by our method may enable the analysis of far larger datasets in photon starved conditions, with important applications to the study of dynamic phenomena in physical science and biological engineering.
Date issued
2022-01-17
URI
https://hdl.handle.net/1721.1/141453
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Department of Mechanical Engineering; Singapore-MIT Alliance in Research and Technology (SMART); Massachusetts Institute of Technology. Department of Physics
Journal
Optics Express
Publisher
The Optical Society
Citation
Guo, Zhen, Levitan, Abraham, Barbastathis, George and Comin, Riccardo. 2022. "Randomized probe imaging through deep k-learning." Optics Express, 30 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.