Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/141456.2

Show simple item record

dc.contributor.authorEbadi, Sepehr
dc.contributor.authorWang, Tout T
dc.contributor.authorLevine, Harry
dc.contributor.authorKeesling, Alexander
dc.contributor.authorSemeghini, Giulia
dc.contributor.authorOmran, Ahmed
dc.contributor.authorBluvstein, Dolev
dc.contributor.authorSamajdar, Rhine
dc.contributor.authorPichler, Hannes
dc.contributor.authorHo, Wen Wei
dc.contributor.authorChoi, Soonwon
dc.contributor.authorSachdev, Subir
dc.contributor.authorGreiner, Markus
dc.contributor.authorVuletić, Vladan
dc.contributor.authorLukin, Mikhail D
dc.date.accessioned2022-04-01T15:01:45Z
dc.date.available2022-04-01T15:01:45Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/141456
dc.description.abstractMotivated by far-reaching applications ranging from quantum simulations of complex processes in physics and chemistry to quantum information processing, a broad effort is currently underway to build large-scale programmable quantum systems. Such systems provide unique insights into strongly correlated quantum matter, while at the same time enabling new methods for computation and metrology. Here, we demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms, featuring strong interactions controlled via coherent atomic excitation into Rydberg states. Using this approach, we realize a quantum spin model with tunable interactions for system sizes ranging from 64 to 256 qubits. We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states, and demonstrate the universal properties of an Ising quantum phase transition in (2+1) dimensions. We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation, experimentally map the phase diagram, and investigate the role of quantum fluctuations. Offering a new lens into the study of complex quantum matter, these observations pave the way for investigations of exotic quantum phases, non-equilibrium entanglement dynamics, and hardware-efficient realization of quantum algorithms.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41586-021-03582-4en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleQuantum phases of matter on a 256-atom programmable quantum simulatoren_US
dc.typeArticleen_US
dc.identifier.citationEbadi, Sepehr, Wang, Tout T, Levine, Harry, Keesling, Alexander, Semeghini, Giulia et al. 2021. "Quantum phases of matter on a 256-atom programmable quantum simulator." Nature, 595 (7866).
dc.relation.journalNatureen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-04-01T14:46:59Z
dspace.orderedauthorsEbadi, S; Wang, TT; Levine, H; Keesling, A; Semeghini, G; Omran, A; Bluvstein, D; Samajdar, R; Pichler, H; Ho, WW; Choi, S; Sachdev, S; Greiner, M; Vuletić, V; Lukin, MDen_US
dspace.date.submission2022-04-01T14:47:11Z
mit.journal.volume595en_US
mit.journal.issue7866en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version