MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Symmetry enriched phases of quantum circuits

Author(s)
Bao, Yimu; Choi, Soonwon; Altman, Ehud
Thumbnail
DownloadAccepted version (1.713Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Quantum circuits consisting of random unitary gates and subject to local measurements have been shown to undergo a phase transition, tuned by the rate of measurement, from a state with volume-law entanglement to an area-law state. From a broader perspective, these circuits generate a novel ensemble of quantum many-body states at their output. In this paper, we characterize this ensemble and classify the phases that can be established as steady states. Symmetry plays a nonstandard role in that the physical symmetry imposed on the circuit elements does not on its own dictate the possible phases. Instead, it is extended by dynamical symmetries associated with this ensemble to form an enlarged symmetry. Thus, we predict phases that have no equilibrium counterpart and could not have been supported by the physical circuit symmetry alone. We give the following examples. First, we classify the phases of a circuit operating on qubit chains with $\mathbb{Z}_2$ symmetry. One striking prediction, corroborated with numerical simulation, is the existence of distinct volume-law phases in one dimension, which nonetheless support true long-range order. We furthermore argue that owing to the enlarged symmetry, this system can in principle support a topological area-law phase, protected by the combination of the circuit symmetry and a dynamical permutation symmetry. Second, we consider a Gaussian fermionic circuit that only conserves fermion parity. Here the enlarged symmetry gives rise to a $U(1)$ critical phase at moderate measurement rates and a Kosterlitz-Thouless transition to area-law phases. We comment on the interpretation of the different phases in terms of the capacity to encode quantum information. We discuss close analogies to the theory of spin glasses pioneered by Edwards and Anderson as well as crucial differences that stem from the quantum nature of the circuit ensemble.
Date issued
2021
URI
https://hdl.handle.net/1721.1/141457
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Annals of Physics
Publisher
Elsevier BV
Citation
Bao, Yimu, Choi, Soonwon and Altman, Ehud. 2021. "Symmetry enriched phases of quantum circuits." Annals of Physics, 435.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.