dc.contributor.author | Kim, Manki | |
dc.date.accessioned | 2022-04-04T14:34:25Z | |
dc.date.available | 2022-04-04T14:34:25Z | |
dc.date.issued | 2022-03-25 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/141636 | |
dc.description.abstract | Abstract
In this note, we prove combinatorial formulas for the Hodge number h2,1 of prime toric divisors in an arbitrary toric hypersurface Calabi-Yau fourfold Y4. We show that it is possible to find a toric hypersurface Calabi-Yau in which there are more than h1,1(Y4) non-perturbative superpotential terms with trivial intermediate Jacobian. Hodge numbers of divisors in toric complete intersection Calabi-Yaus are the subjects of the sequel. | en_US |
dc.publisher | Springer Berlin Heidelberg | en_US |
dc.relation.isversionof | https://doi.org/10.1007/JHEP03(2022)168 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Berlin Heidelberg | en_US |
dc.title | A note on h2,1 of divisors in CY fourfolds. Part I | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Journal of High Energy Physics. 2022 Mar 25;2022(3):168 | en_US |
dc.contributor.department | Massachusetts Institute of Technology. Center for Theoretical Physics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-04-03T03:13:26Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2022-04-03T03:13:26Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |