Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber
dc.contributor.author | Conrad, Janet | |
dc.date.accessioned | 2022-04-04T17:34:03Z | |
dc.date.available | 2022-04-04T17:34:03Z | |
dc.date.issued | 2021 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/141657 | |
dc.description.abstract | We present the multiple particle identification (MPID) network, a convolutional neural network (CNN) for multiple object classification, developed by MicroBooNE. MPID provides the probabilities of $e^-$, $\gamma$, $\mu^-$, $\pi^\pm$, and protons in a single liquid argon time projection chamber (LArTPC) readout plane. The network extends the single particle identification network previously developed by MicroBooNE. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep learning based $\nu_e$ search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector. | en_US |
dc.language.iso | en | |
dc.publisher | American Physical Society (APS) | en_US |
dc.relation.isversionof | 10.1103/PHYSREVD.103.092003 | en_US |
dc.rights | Creative Commons Attribution 4.0 International license | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | APS | en_US |
dc.title | Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Conrad, Janet. 2021. "Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber." Physical Review D, 103 (9). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | |
dc.relation.journal | Physical Review D | en_US |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-04-04T17:27:15Z | |
dspace.orderedauthors | Abratenko, P; Alrashed, M; An, R; Anthony, J; Asaadi, J; Ashkenazi, A; Balasubramanian, S; Baller, B; Barnes, C; Barr, G; Basque, V; Bathe-Peters, L; Benevides Rodrigues, O; Berkman, S; Bhanderi, A; Bhat, A; Bishai, M; Blake, A; Bolton, T; Camilleri, L; Caratelli, D; Caro Terrazas, I; Castillo Fernandez, R; Cavanna, F; Cerati, G; Chen, Y; Church, E; Cianci, D; Conrad, JM; Convery, M; Cooper-Troendle, L; Crespo-Anadón, JI; Del Tutto, M; Devitt, D; Diurba, R; Domine, L; Dorrill, R; Duffy, K; Dytman, S; Eberly, B; Ereditato, A; Escudero Sanchez, L; Evans, JJ; Fiorentini Aguirre, GA; Fitzpatrick, RS; Fleming, BT; Foppiani, N; Franco, D; Furmanski, AP; Garcia-Gamez, D; Gardiner, S; Ge, G; Gollapinni, S; Goodwin, O; Gramellini, E; Green, P; Greenlee, H; Gu, W; Guenette, R; Guzowski, P; Hall, E; Hamilton, P; Hen, O; Horton-Smith, GA; Hourlier, A; Huang, E-C; Itay, R; James, C; Jan de Vries, J; Ji, X; Jiang, L; Jo, JH; Johnson, RA; Jwa, Y-J; Kamp, N; Karagiorgi, G; Ketchum, W; Kirby, B; Kirby, M; Kobilarcik, T; Kreslo, I; LaZur, R; Lepetic, I; Li, K; Li, Y; Littlejohn, BR; Lorca, D; Louis, WC; Luo, X; Marchionni, A; Marcocci, S; Mariani, C; Marsden, D; Marshall, J; Martin-Albo, J; Martinez Caicedo, DA; Mason, K; Mastbaum, A; McConkey, N; Meddage, V; Mettler, T; Miller, K; Mills, J; Mistry, K; Mogan, A; Mohayai, T; Moon, J; Mooney, M; Moor, AF; Moore, CD; Mousseau, J; Murphy, M; Naples, D; Navrer-Agasson, A; Neely, RK; Nienaber, P; Nowak, J; Palamara, O; Paolone, V; Papadopoulou, A; Papavassiliou, V; Pate, SF; Paudel, A; Pavlovic, Z; Piasetzky, E; Ponce-Pinto, ID; Porzio, D; Prince, S; Qian, X; Raaf, JL; Radeka, V; Rafique, A; Reggiani-Guzzo, M; Ren, L; Rochester, L; Rodriguez Rondon, J; Rogers, HE; Rosenberg, M; Ross-Lonergan, M; Russell, B; Scanavini, G; Schmitz, DW; Schukraft, A; Shaevitz, MH; Sharankova, R; Sinclair, J; Smith, A; Snider, EL; Soderberg, M; Söldner-Rembold, S; Soleti, SR; Spentzouris, P; Spitz, J; Stancari, M; John, JS; Strauss, T; Sutton, K; Sword-Fehlberg, S; Szelc, AM; Tagg, N; Tang, W; Terao, K; Thorpe, C; Toups, M; Tsai, Y-T; Tufanli, S; Uchida, MA; Usher, T; Van De Pontseele, W; Viren, B; Weber, M; Wei, H; Williams, Z; Wolbers, S; Wongjirad, T; Wospakrik, M; Wu, W; Yang, T; Yarbrough, G; Yates, LE; Zeller, GP; Zennamo, J; Zhang, C | en_US |
dspace.date.submission | 2022-04-04T17:27:29Z | |
mit.journal.volume | 103 | en_US |
mit.journal.issue | 9 | en_US |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |