Show simple item record

dc.contributor.authorConrad, Janet
dc.date.accessioned2022-04-04T17:34:03Z
dc.date.available2022-04-04T17:34:03Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/141657
dc.description.abstractWe present the multiple particle identification (MPID) network, a convolutional neural network (CNN) for multiple object classification, developed by MicroBooNE. MPID provides the probabilities of $e^-$, $\gamma$, $\mu^-$, $\pi^\pm$, and protons in a single liquid argon time projection chamber (LArTPC) readout plane. The network extends the single particle identification network previously developed by MicroBooNE. MPID takes as input an image either cropped around a reconstructed interaction vertex or containing only activity connected to a reconstructed vertex, therefore relieving the tool from inefficiencies in vertex finding and particle clustering. The network serves as an important component in MicroBooNE's deep learning based $\nu_e$ search analysis. In this paper, we present the network's design, training, and performance on simulation and data from the MicroBooNE detector.en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionof10.1103/PHYSREVD.103.092003en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titleConvolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamberen_US
dc.typeArticleen_US
dc.identifier.citationConrad, Janet. 2021. "Convolutional neural network for multiple particle identification in the MicroBooNE liquid argon time projection chamber." Physical Review D, 103 (9).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalPhysical Review Den_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-04T17:27:15Z
dspace.orderedauthorsAbratenko, P; Alrashed, M; An, R; Anthony, J; Asaadi, J; Ashkenazi, A; Balasubramanian, S; Baller, B; Barnes, C; Barr, G; Basque, V; Bathe-Peters, L; Benevides Rodrigues, O; Berkman, S; Bhanderi, A; Bhat, A; Bishai, M; Blake, A; Bolton, T; Camilleri, L; Caratelli, D; Caro Terrazas, I; Castillo Fernandez, R; Cavanna, F; Cerati, G; Chen, Y; Church, E; Cianci, D; Conrad, JM; Convery, M; Cooper-Troendle, L; Crespo-Anadón, JI; Del Tutto, M; Devitt, D; Diurba, R; Domine, L; Dorrill, R; Duffy, K; Dytman, S; Eberly, B; Ereditato, A; Escudero Sanchez, L; Evans, JJ; Fiorentini Aguirre, GA; Fitzpatrick, RS; Fleming, BT; Foppiani, N; Franco, D; Furmanski, AP; Garcia-Gamez, D; Gardiner, S; Ge, G; Gollapinni, S; Goodwin, O; Gramellini, E; Green, P; Greenlee, H; Gu, W; Guenette, R; Guzowski, P; Hall, E; Hamilton, P; Hen, O; Horton-Smith, GA; Hourlier, A; Huang, E-C; Itay, R; James, C; Jan de Vries, J; Ji, X; Jiang, L; Jo, JH; Johnson, RA; Jwa, Y-J; Kamp, N; Karagiorgi, G; Ketchum, W; Kirby, B; Kirby, M; Kobilarcik, T; Kreslo, I; LaZur, R; Lepetic, I; Li, K; Li, Y; Littlejohn, BR; Lorca, D; Louis, WC; Luo, X; Marchionni, A; Marcocci, S; Mariani, C; Marsden, D; Marshall, J; Martin-Albo, J; Martinez Caicedo, DA; Mason, K; Mastbaum, A; McConkey, N; Meddage, V; Mettler, T; Miller, K; Mills, J; Mistry, K; Mogan, A; Mohayai, T; Moon, J; Mooney, M; Moor, AF; Moore, CD; Mousseau, J; Murphy, M; Naples, D; Navrer-Agasson, A; Neely, RK; Nienaber, P; Nowak, J; Palamara, O; Paolone, V; Papadopoulou, A; Papavassiliou, V; Pate, SF; Paudel, A; Pavlovic, Z; Piasetzky, E; Ponce-Pinto, ID; Porzio, D; Prince, S; Qian, X; Raaf, JL; Radeka, V; Rafique, A; Reggiani-Guzzo, M; Ren, L; Rochester, L; Rodriguez Rondon, J; Rogers, HE; Rosenberg, M; Ross-Lonergan, M; Russell, B; Scanavini, G; Schmitz, DW; Schukraft, A; Shaevitz, MH; Sharankova, R; Sinclair, J; Smith, A; Snider, EL; Soderberg, M; Söldner-Rembold, S; Soleti, SR; Spentzouris, P; Spitz, J; Stancari, M; John, JS; Strauss, T; Sutton, K; Sword-Fehlberg, S; Szelc, AM; Tagg, N; Tang, W; Terao, K; Thorpe, C; Toups, M; Tsai, Y-T; Tufanli, S; Uchida, MA; Usher, T; Van De Pontseele, W; Viren, B; Weber, M; Wei, H; Williams, Z; Wolbers, S; Wongjirad, T; Wospakrik, M; Wu, W; Yang, T; Yarbrough, G; Yates, LE; Zeller, GP; Zennamo, J; Zhang, Cen_US
dspace.date.submission2022-04-04T17:27:29Z
mit.journal.volume103en_US
mit.journal.issue9en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record