MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tuning Advanced LIGO to kilohertz signals from neutron-star collisions

Author(s)
Ganapathy, Dhruva; McCuller, Lee; Rollins, Jameson Graef; Hall, Evan D; Barsotti, Lisa; Evans, Matthew; ... Show more Show less
Thumbnail
DownloadPublished version (466.9Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
© 2021 American Physical Society. Gravitational waves produced at kilohertz frequencies in the aftermath of a neutron star collision can shed light on the behavior of matter at extreme temperatures and densities that are inaccessible to laboratory experiments. Gravitational-wave interferometers are limited by quantum noise at these frequencies but can be tuned via their optical configuration to maximize the probability of postmerger signal detection. We compare two such tuning strategies to turn Advanced LIGO into a postmerger-focused instrument: first, a wideband tuning that enhances the instrument's signal-to-noise ratio 40-80% broadly above 1 kHz relative to the baseline, with a modest sensitivity penalty at lower frequencies; second, a "detuned"configuration that provides even more enhancement than the wideband tuning, but over only a narrow frequency band and at the expense of substantially worse quantum noise performance elsewhere. With an optimistic accounting for instrument loss and uncertainty in postmerger parameters, the detuned instrument has a 40% sensitivity improvement compared to the wideband instrument.
Date issued
2021
URI
https://hdl.handle.net/1721.1/141727
Department
LIGO (Observatory : Massachusetts Institute of Technology)
Journal
Physical Review D
Publisher
American Physical Society (APS)
Citation
Ganapathy, Dhruva, McCuller, Lee, Rollins, Jameson Graef, Hall, Evan D, Barsotti, Lisa et al. 2021. "Tuning Advanced LIGO to kilohertz signals from neutron-star collisions." Physical Review D, 103 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.