Show simple item record

dc.contributor.authorLi, Tingxin
dc.contributor.authorJiang, Shengwei
dc.contributor.authorLi, Lizhong
dc.contributor.authorZhang, Yang
dc.contributor.authorKang, Kaifei
dc.contributor.authorZhu, Jiacheng
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorChowdhury, Debanjan
dc.contributor.authorFu, Liang
dc.contributor.authorShan, Jie
dc.contributor.authorMak, Kin Fai
dc.date.accessioned2022-04-12T18:26:35Z
dc.date.available2022-04-12T18:26:35Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/141862
dc.description.abstractThe evolution of a Landau Fermi liquid into a non-magnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics1-6. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids4-7, exciton condensates8 and unconventional superconductivity1. Semiconductor moiré materials realize a highly controllable Hubbard model simulator on a triangular lattice9-22, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling collapse of the resistance, a continuously vanishing charge gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side. We also observe a smooth evolution of the magnetic susceptibility across the MIT and no evidence of long-range magnetic order down to ~5% of the Curie-Weiss temperature. This signals an abundance of low-energy spinful excitations on the insulating side that is further corroborated by the Pomeranchuk effect observed on the metallic side. Our results are consistent with the universal critical theory of a continuous Mott transition in two dimensions4,23.en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41586-021-03853-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleContinuous Mott transition in semiconductor moiré superlatticesen_US
dc.typeArticleen_US
dc.identifier.citationLi, Tingxin, Jiang, Shengwei, Li, Lizhong, Zhang, Yang, Kang, Kaifei et al. 2021. "Continuous Mott transition in semiconductor moiré superlattices." Nature, 597 (7876).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalNatureen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2022-04-12T17:50:44Z
dspace.orderedauthorsLi, T; Jiang, S; Li, L; Zhang, Y; Kang, K; Zhu, J; Watanabe, K; Taniguchi, T; Chowdhury, D; Fu, L; Shan, J; Mak, KFen_US
dspace.date.submission2022-04-12T17:51:07Z
mit.journal.volume597en_US
mit.journal.issue7876en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record