Show simple item record

dc.contributor.authorLi, Sean
dc.contributor.authorKhovanova, Tanya
dc.date.accessioned2022-04-13T12:58:47Z
dc.date.available2022-04-13T12:58:47Z
dc.date.issued2022-01-15
dc.identifier.urihttps://hdl.handle.net/1721.1/141866
dc.description.abstractAbstract Consider equipping an alphabet $$\mathcal {A}$$ A with a group action which partitions the set of words into equivalence classes which we call patterns. We answer standard questions for Penney’s game on patterns and show non-transitivity for the game on patterns as the length of the pattern tends to infinity. We also analyze bounds on the pattern-based Conway leading number and expected wait time, and further explore the game under the cyclic and symmetric group actions.en_US
dc.publisherSpringer International Publishingen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00026-021-00564-1en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer International Publishingen_US
dc.titleThe Penney’s Game with Group Actionen_US
dc.typeArticleen_US
dc.identifier.citationLi, Sean and Khovanova, Tanya. 2022. "The Penney’s Game with Group Action."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-13T03:25:13Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Nature Switzerland AG
dspace.embargo.termsY
dspace.date.submission2022-04-13T03:25:13Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record