Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes
Author(s)
de Groote, RP; Billowes, J; Binnersley, CL; Bissell, ML; Cocolios, TE; Day Goodacre, T; Farooq-Smith, GJ; Fedorov, DV; Flanagan, KT; Franchoo, S; Garcia Ruiz, RF; Gins, W; Holt, JD; Koszorús, Á; Lynch, KM; Miyagi, T; Nazarewicz, W; Neyens, G; Reinhard, P-G; Rothe, S; Stroke, HH; Vernon, AR; Wendt, KDA; Wilkins, SG; Xu, ZY; Yang, XF; ... Show more Show less
DownloadPublished version (1.667Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Nuclear charge radii globally scale with atomic mass number A as A1∕3, and isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. This odd–even staggering, ubiquitous throughout the nuclear landscape1, varies with the number of protons and neutrons, and poses a substantial challenge for nuclear theory2–4. Here, we report measurements of the charge radii of short-lived copper isotopes up to the very exotic 78Cu (with proton number Z = 29 and neutron number N = 49), produced at only 20 ions s–1, using the collinear resonance ionization spectroscopy method at the Isotope Mass Separator On-Line Device facility (ISOLDE) at CERN. We observe an unexpected reduction in the odd–even staggering for isotopes approaching the N = 50 shell gap. To describe the data, we applied models based on nuclear density functional theory5,6 and A-body valence-space in-medium similarity renormalization group theory7,8. Through these comparisons, we demonstrate a relation between the global behaviour of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects, naturally emerge from A-body calculations fitted to properties of A ≤ 4 nuclei.
Date issued
2020Department
Massachusetts Institute of Technology. Department of PhysicsJournal
Nature Physics
Publisher
Springer Science and Business Media LLC
Citation
de Groote, RP, Billowes, J, Binnersley, CL, Bissell, ML, Cocolios, TE et al. 2020. "Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes." Nature Physics, 16 (6).
Version: Final published version