MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes

Author(s)
de Groote, RP; Billowes, J; Binnersley, CL; Bissell, ML; Cocolios, TE; Day Goodacre, T; Farooq-Smith, GJ; Fedorov, DV; Flanagan, KT; Franchoo, S; Garcia Ruiz, RF; Gins, W; Holt, JD; Koszorús, Á; Lynch, KM; Miyagi, T; Nazarewicz, W; Neyens, G; Reinhard, P-G; Rothe, S; Stroke, HH; Vernon, AR; Wendt, KDA; Wilkins, SG; Xu, ZY; Yang, XF; ... Show more Show less
Thumbnail
DownloadPublished version (1.667Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
© 2020, The Author(s), under exclusive licence to Springer Nature Limited. Nuclear charge radii globally scale with atomic mass number A as A1∕3, and isotopes with an odd number of neutrons are usually slightly smaller in size than their even-neutron neighbours. This odd–even staggering, ubiquitous throughout the nuclear landscape1, varies with the number of protons and neutrons, and poses a substantial challenge for nuclear theory2–4. Here, we report measurements of the charge radii of short-lived copper isotopes up to the very exotic 78Cu (with proton number Z = 29 and neutron number N = 49), produced at only 20 ions s–1, using the collinear resonance ionization spectroscopy method at the Isotope Mass Separator On-Line Device facility (ISOLDE) at CERN. We observe an unexpected reduction in the odd–even staggering for isotopes approaching the N = 50 shell gap. To describe the data, we applied models based on nuclear density functional theory5,6 and A-body valence-space in-medium similarity renormalization group theory7,8. Through these comparisons, we demonstrate a relation between the global behaviour of charge radii and the saturation density of nuclear matter, and show that the local charge radii variations, which reflect the many-body polarization effects, naturally emerge from A-body calculations fitted to properties of A ≤ 4 nuclei.
Date issued
2020
URI
https://hdl.handle.net/1721.1/141869
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Nature Physics
Publisher
Springer Science and Business Media LLC
Citation
de Groote, RP, Billowes, J, Binnersley, CL, Bissell, ML, Cocolios, TE et al. 2020. "Measurement and microscopic description of odd–even staggering of charge radii of exotic copper isotopes." Nature Physics, 16 (6).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.