Show simple item record

dc.contributor.authorGwynne, Ewain
dc.contributor.authorPfeffer, Joshua
dc.contributor.authorSheffield, Scott
dc.date.accessioned2022-04-19T15:05:35Z
dc.date.available2022-04-19T15:05:35Z
dc.date.issued2022-02-11
dc.identifier.urihttps://hdl.handle.net/1721.1/141926
dc.description.abstractAbstract Recent works have shown that there is a canonical way to to assign a metric (distance function) to a Liouville quantum gravity (LQG) surface for any parameter $$\gamma \in (0,2)$$ γ ∈ ( 0 , 2 ) . We establish a strong confluence property for LQG geodesics, which generalizes a result proven by Angel, Kolesnik and Miermont for the Brownian map. Using this property, we also establish zero-one laws for the Hausdorff dimensions of geodesics, metric ball boundaries, and metric nets w.r.t. the Euclidean or LQG metric. In the case of a metric ball boundary, our result combined with earlier work of Gwynne (Commun Math Phys 378(1):625–689, 2020. arXiv:1909.08588 ) gives a formula for the a.s. Hausdorff dimension for the boundary of the metric ball stopped when it hits a fixed point in terms of the Hausdorff dimension of the whole LQG surface. We also show that the Hausdorff dimension of the metric ball boundary is carried by points which are not on the boundary of any complementary connected component of the ball.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00440-022-01112-5en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleGeodesics and metric ball boundaries in Liouville quantum gravityen_US
dc.typeArticleen_US
dc.identifier.citationGwynne, Ewain, Pfeffer, Joshua and Sheffield, Scott. 2022. "Geodesics and metric ball boundaries in Liouville quantum gravity."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-17T03:37:26Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2022-04-17T03:37:26Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record