Show simple item record

dc.contributor.authorXie, Yonglong
dc.contributor.authorPierce, Andrew T
dc.contributor.authorPark, Jeong Min
dc.contributor.authorParker, Daniel E
dc.contributor.authorKhalaf, Eslam
dc.contributor.authorLedwith, Patrick
dc.contributor.authorCao, Yuan
dc.contributor.authorLee, Seung Hwan
dc.contributor.authorChen, Shaowen
dc.contributor.authorForrester, Patrick R
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorVishwanath, Ashvin
dc.contributor.authorJarillo-Herrero, Pablo
dc.contributor.authorYacoby, Amir
dc.date.accessioned2022-04-19T17:32:32Z
dc.date.available2022-04-19T17:32:32Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/141932
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Fractional Chern insulators (FCIs) are lattice analogues of fractional quantum Hall states that may provide a new avenue towards manipulating non-Abelian excitations. Early theoretical studies<jats:sup>1–7</jats:sup> have predicted their existence in systems with flat Chern bands and highlighted the critical role of a particular quantum geometry. However, FCI states have been observed only in Bernal-stacked bilayer graphene (BLG) aligned with hexagonal boron nitride (hBN)<jats:sup>8</jats:sup>, in which a very large magnetic field is responsible for the existence of the Chern bands, precluding the realization of FCIs at zero field. By contrast, magic-angle twisted BLG<jats:sup>9–12</jats:sup> supports flat Chern bands at zero magnetic field<jats:sup>13–17</jats:sup>, and therefore offers a promising route towards stabilizing zero-field FCIs. Here we report the observation of eight FCI states at low magnetic field in magic-angle twisted BLG enabled by high-resolution local compressibility measurements. The first of these states emerge at 5 T, and their appearance is accompanied by the simultaneous disappearance of nearby topologically trivial charge density wave states. We demonstrate that, unlike the case of the BLG/hBN platform, the principal role of the weak magnetic field is merely to redistribute the Berry curvature of the native Chern bands and thereby realize a quantum geometry favourable for the emergence of FCIs. Our findings strongly suggest that FCIs may be realized at zero magnetic field and pave the way for the exploration and manipulation of anyonic excitations in flat moiré Chern bands.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41586-021-04002-3en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleFractional Chern insulators in magic-angle twisted bilayer grapheneen_US
dc.typeArticleen_US
dc.identifier.citationXie, Yonglong, Pierce, Andrew T, Park, Jeong Min, Parker, Daniel E, Khalaf, Eslam et al. 2021. "Fractional Chern insulators in magic-angle twisted bilayer graphene." Nature, 600 (7889).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalNatureen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-19T17:21:09Z
dspace.orderedauthorsXie, Y; Pierce, AT; Park, JM; Parker, DE; Khalaf, E; Ledwith, P; Cao, Y; Lee, SH; Chen, S; Forrester, PR; Watanabe, K; Taniguchi, T; Vishwanath, A; Jarillo-Herrero, P; Yacoby, Aen_US
dspace.date.submission2022-04-19T17:21:14Z
mit.journal.volume600en_US
mit.journal.issue7889en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record