MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stacking-engineered ferroelectricity in bilayer boron nitride

Author(s)
Yasuda, Kenji; Wang, Xirui; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo
Thumbnail
DownloadAccepted version (666.8Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Two-dimensional (2D) ferroelectrics with robust polarization down to atomic thicknesses provide building blocks for functional heterostructures. Experimental realization remains challenging because of the requirement of a layered polar crystal. Here, we demonstrate a rational design approach to engineering 2D ferroelectrics from a nonferroelectric parent compound by using van der Waals assembly. Parallel-stacked bilayer boron nitride exhibits out-of-plane electric polarization that reverses depending on the stacking order. The polarization switching is probed through the resistance of an adjacently stacked graphene sheet. Twisting the boron nitride sheets by a small angle changes the dynamics of switching because of the formation of moiré ferroelectricity with staggered polarization. The ferroelectricity persists to room temperature while keeping the high mobility of graphene, paving the way for potential ultrathin nonvolatile memory applications.
Date issued
2021
URI
https://hdl.handle.net/1721.1/141939
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Science
Publisher
American Association for the Advancement of Science (AAAS)
Citation
Yasuda, Kenji, Wang, Xirui, Watanabe, Kenji, Taniguchi, Takashi and Jarillo-Herrero, Pablo. 2021. "Stacking-engineered ferroelectricity in bilayer boron nitride." Science, 372 (6549).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.