MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Seascape origin of Richards growth

Author(s)
Swartz, Daniel W; Ottino-Löffler, Bertrand; Kardar, Mehran
Thumbnail
DownloadPublished version (869.0Kb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
First proposed as an empirical rule over half a century ago, the Richards growth equation has been frequently invoked in population modeling and pandemic forecasting. Central to this model is the advent of a fractional exponent $\gamma$, typically fitted to the data. While various motivations for this non-analytical form have been proposed, it is still considered foremost an empirical fitting procedure. Here, we find that Richards-like growth laws emerge naturally from generic analytical growth rules in a distributed population, upon inclusion of {\bf (i)} migration (spatial diffusion) amongst different locales, and {\bf (ii)} stochasticity in the growth rate, also known as "seascape noise." The latter leads to a wide (power-law) distribution in local population number that, while smoothened through the former, can still result in a fractional growth law for the overall population. This justification of the Richards growth law thus provides a testable connection to the distribution of constituents of the population.
Date issued
2022-01
URI
https://hdl.handle.net/1721.1/141985
Department
Massachusetts Institute of Technology. Department of Physics
Journal
Physical Review E
Publisher
American Physical Society (APS)
Citation
Swartz, Daniel W, Ottino-Löffler, Bertrand and Kardar, Mehran. 2022. "Seascape origin of Richards growth." Physical Review E, 105 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.