MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A simple model for how the risk of pandemics from different virus families depends on viral and human traits

Author(s)
Doelger, Julia; Chakraborty, Arup K; Kardar, Mehran
Thumbnail
DownloadSubmitted version (757.8Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Different virus families, like influenza or corona viruses, exhibit characteristic traits such as typical modes of transmission and replication as well as specific animal reservoirs in which each family of viruses circulate. These traits of genetically related groups of viruses influence how easily an animal virus can adapt to infect humans, how well novel human variants can spread in the population, and the risk of causing a global pandemic. Relating the traits of virus families to their risk of causing future pandemics, and identification of the key time scales within which public health interventions can control the spread of a new virus that could cause a pandemic, are obviously significant. We address these issues using a minimal model whose parameters are related to characteristic traits of different virus families. A key trait of viruses that "spillover" from animal reservoirs to infect humans is their ability to propagate infection through the human population (fitness). We find that the risk of pandemics emerging from virus families characterized by a wide distribution of the fitness of spillover strains is much higher than if such strains were characterized by narrow fitness distributions around the same mean. The dependences of the risk of a pandemic on various model parameters exhibit inflection points. We find that these inflection points define informative thresholds. For example, the inflection point in variation of pandemic risk with time after the spillover represents a threshold time beyond which global interventions would likely be too late to prevent a pandemic.
Date issued
2022
URI
https://hdl.handle.net/1721.1/141989
Department
Massachusetts Institute of Technology. Institute for Medical Engineering & Science; Massachusetts Institute of Technology. Department of Physics; Massachusetts Institute of Technology. Department of Chemical Engineering; Massachusetts Institute of Technology. Department of Chemistry; Ragon Institute of MGH, MIT and Harvard
Journal
Mathematical Biosciences
Publisher
Elsevier BV
Citation
Doelger, Julia, Chakraborty, Arup K and Kardar, Mehran. 2022. "A simple model for how the risk of pandemics from different virus families depends on viral and human traits." Mathematical Biosciences, 343.
Version: Original manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.