MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data

Author(s)
Conrad, Janet
Thumbnail
DownloadPublished version (1.974Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
We present a measurement of the high-energy astrophysical muon–neutrino flux with the IceCube Neutrino Observatory. The measurement uses a high-purity selection of 650k neutrino-induced muon tracks from the northern celestial hemisphere, corresponding to 9.5 yr of experimental data. With respect to previous publications, the measurement is improved by the increased size of the event sample and the extended model testing beyond simple power-law hypotheses. An updated treatment of systematic uncertainties and atmospheric background fluxes has been implemented based on recent models. The best-fit single power-law parameterization for the astrophysical energy spectrum results in a normalization of ${\phi }_{@100\mathrm{TeV}}^{{\nu }_{\mu }+{\bar{\nu }}_{\mu }}={1.44}_{-0.26}^{+0.25}\times {10}^{-18}\,{\mathrm{GeV}}^{-1}{\mathrm{cm}}^{-2}{{\rm{s}}}^{-1}{\mathrm{sr}}^{-1}$ and a spectral index ${\gamma }_{\mathrm{SPL}}={2.37}_{-0.09}^{+0.09}$, constrained in the energy range from 15 TeV to 5 PeV. The model tests include a single power law with a spectral cutoff at high energies, a log-parabola model, several source-class-specific flux predictions from the literature, and a model-independent spectral unfolding. The data are consistent with a single power-law hypothesis, however, spectra with softening above one PeV are statistically more favorable at a two-sigma level.
Date issued
2022-03-01
URI
https://hdl.handle.net/1721.1/142025
Department
Massachusetts Institute of Technology. Department of Physics
Journal
The Astrophysical Journal
Publisher
American Astronomical Society
Citation
Conrad, Janet. 2022. "Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data." The Astrophysical Journal, 928 (1).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.