Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation
dc.contributor.author | Conrad, Janet | |
dc.date.accessioned | 2022-04-21T18:30:58Z | |
dc.date.available | 2022-04-21T18:30:58Z | |
dc.date.issued | 2022-01-01 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/142031 | |
dc.description.abstract | Wire-Cell is a 3D event reconstruction package for liquid argon time projection chambers. Through geometry, time, and drifted charge from multiple readout wire planes, 3D space points with associated charge are reconstructed prior to the pattern recognition stage. Pattern recognition techniques, including track trajectory and dQ/dx (ionization charge per unit length) fitting, 3D neutrino vertex fitting, track and shower separation, particle-level clustering, and particle identification are then applied on these 3D space points as well as the original 2D projection measurements. A deep neural network is developed to enhance the reconstruction of the neutrino interaction vertex. Compared to traditional algorithms, the deep neural network boosts the vertex efficiency by a relative 30% for charged-current νe interactions. This pattern recognition achieves 80–90% reconstruction efficiencies for primary leptons, after a 65.8% (72.9%) vertex efficiency for charged-current νe (νμ) interactions. Based on the resulting reconstructed particles and their kinematics, we also achieve 15-20% energy reconstruction resolutions for charged-current neutrino interactions. | en_US |
dc.language.iso | en | |
dc.publisher | IOP Publishing | en_US |
dc.relation.isversionof | 10.1088/1748-0221/17/01/p01037 | en_US |
dc.rights | Creative Commons Attribution-Noncommercial-Share Alike | en_US |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | en_US |
dc.source | arXiv | en_US |
dc.title | Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Conrad, Janet. 2022. "Wire-cell 3D pattern recognition techniques for neutrino event reconstruction in large LArTPCs: algorithm description and quantitative evaluation with MicroBooNE simulation." Journal of Instrumentation, 17 (01). | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Physics | |
dc.contributor.department | Massachusetts Institute of Technology. Laboratory for Nuclear Science | |
dc.relation.journal | Journal of Instrumentation | en_US |
dc.eprint.version | Author's final manuscript | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2022-04-21T18:24:31Z | |
dspace.orderedauthors | Abratenko, P; An, R; Anthony, J; Arellano, L; Asaadi, J; Ashkenazi, A; Balasubramanian, S; Baller, B; Barnes, C; Barr, G; Basque, V; Bathe-Peters, L; Benevides Rodrigues, O; Berkman, S; Bhanderi, A; Bhat, A; Bishai, M; Blake, A; Bolton, T; Book, JY; Camilleri, L; Caratelli, D; Caro Terrazas, I; Castillo Fernandez, R; Cavanna, F; Cerati, G; Chen, Y; Cianci, D; Conrad, JM; Convery, M; Cooper-Troendle, L; Crespo-Anadón, JI; Del Tutto, M; Dennis, SR; Detje, P; Devitt, A; Diurba, R; Dorrill, R; Duffy, K; Dytman, S; Eberly, B; Ereditato, A; Evans, JJ; Fine, R; Fiorentini Aguirre, GA; Fitzpatrick, RS; Fleming, BT; Foppiani, N; Franco, D; Furmanski, AP; Garcia-Gamez, D; Gardiner, S; Ge, G; Gollapinni, S; Goodwin, O; Gramellini, E; Green, P; Greenlee, H; Gu, W; Guenette, R; Guzowski, P; Hagaman, L; Hen, O; Hilgenberg, C; Horton-Smith, GA; Hourlier, A; Itay, R; James, C; Ji, X; Jiang, L; Jo, JH; Johnson, RA; Jwa, Y-J; Kalra, D; Kamp, N; Kaneshige, N; Karagiorgi, G; Ketchum, W; Kirby, M; Kobilarcik, T; Kreslo, I; LaZur, R; Lepetic, I; Li, K; Li, Y; Lin, K; Littlejohn, BR; Louis, WC; Luo, X; Manivannan, K; Mariani, C; Marsden, D; Marshall, J; Martinez Caicedo, DA; Mason, K; Mastbaum, A; McConkey, N; Meddage, V; Mettler, T; Miller, K; Mills, J; Mistry, K; Mogan, A; Mohayai, T; Moon, J; Mooney, M; Moor, AF; Moore, CD; Mora Lepin, L; Mousseau, J; Murphy, M; Naples, D; Navrer-Agasson, A; Nebot-Guinot, M; Neely, RK; Newmark, DA; Nowak, J; Nunes, M; Palamara, O; Paolone, V; Papadopoulou, A; Papavassiliou, V; Pate, SF; Patel, N; Paudel, A; Pavlovic, Z; Piasetzky, E; Ponce-Pinto, ID; Prince, S; Qian, X; Raaf, JL; Radeka, V; Rafique, A; Reggiani-Guzzo, M; Ren, L; Rice, LCJ; Rochester, L; Rodriguez Rondon, J; Rosenberg, M; Ross-Lonergan, M; Scanavini, G; Schmitz, DW; Schukraft, A; Seligman, W; Shaevitz, MH; Sharankova, R; Shi, J; Sinclair, J; Smith, A; Snider, EL; Soderberg, M; Söldner-Rembold, S; Spentzouris, P; Spitz, J; Stancari, M; St. John, J; Strauss, T; Sutton, K; Sword-Fehlberg, S; Szelc, AM; Tagg, N; Tang, W; Terao, K; Thorpe, C; Totani, D; Toups, M; Tsai, Y-T; Uchida, MA; Usher, T; Van De Pontseele, W; Viren, B; Weber, M; Wei, H; Williams, Z; Wolbers, S; Wongjirad, T; Wospakrik, M; Wresilo, K; Wright, N; Wu, W; Yandel, E; Yang, T; Yarbrough, G; Yates, LE; Yu, HW; Zeller, GP; Zennamo, J; Zhang, C | en_US |
dspace.date.submission | 2022-04-21T18:24:34Z | |
mit.journal.volume | 17 | en_US |
mit.journal.issue | 01 | en_US |
mit.license | OPEN_ACCESS_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |