Show simple item record

dc.contributor.authorCarloni, K
dc.contributor.authorKamp, NW
dc.contributor.authorSchneider, A
dc.contributor.authorConrad, JM
dc.date.accessioned2022-04-21T18:34:12Z
dc.date.available2022-04-21T18:34:12Z
dc.date.issued2022-02-01
dc.identifier.urihttps://hdl.handle.net/1721.1/142032
dc.description.abstract<jats:title>Abstract</jats:title> <jats:p>When electrons with energies of O(100) MeV pass through a liquid argon time projection chamber (LArTPC), they deposit energy in the form of electromagnetic showers. Methods to reconstruct the energy of these showers in LArTPCs often rely on the combination of a clustering algorithm and a linear calibration between the shower energy and charge contained in the cluster. This reconstruction process could be improved through the use of a convolutional neural network (CNN). Here we discuss the performance of various CNN-based models on simulated LArTPC images, and then compare the best performing models to a typical linear calibration algorithm. We show that the CNN method is able to address inefficiencies caused by unresponsive wires in LArTPCs and reconstruct a larger fraction of imperfect events to within 5 % accuracy compared with the linear algorithm.</jats:p>en_US
dc.language.isoen
dc.publisherIOP Publishingen_US
dc.relation.isversionof10.1088/1748-0221/17/02/p02022en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleConvolutional neural networks for shower energy prediction in liquid argon time projection chambersen_US
dc.typeArticleen_US
dc.identifier.citationCarloni, K, Kamp, NW, Schneider, A and Conrad, JM. 2022. "Convolutional neural networks for shower energy prediction in liquid argon time projection chambers." Journal of Instrumentation, 17 (02).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalJournal of Instrumentationen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-21T18:29:27Z
dspace.orderedauthorsCarloni, K; Kamp, NW; Schneider, A; Conrad, JMen_US
dspace.date.submission2022-04-21T18:29:28Z
mit.journal.volume17en_US
mit.journal.issue02en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record