Quantifying Bias in a Face Verification System
Author(s)
Frisella, Megan; Khorrami, Pooya; Matterer, Jason; Kratkiewicz, Kendra; Torres-Carrasquillo, Pedro
Downloadcsmf-03-00006.pdf (2.670Mb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Machine learning models perform face verification (FV) for a variety of highly consequential applications, such as biometric authentication, face identification, and surveillance. Many state-of-the-art FV systems suffer from unequal performance across demographic groups, which is commonly overlooked by evaluation measures that do not assess population-specific performance. Deployed systems with bias may result in serious harm against individuals or groups who experience underperformance. We explore several fairness definitions and metrics, attempting to quantify bias in Google’s FaceNet model. In addition to statistical fairness metrics, we analyze clustered face embeddings produced by the FV model. We link well-clustered embeddings (well-defined, dense clusters) for a demographic group to biased model performance against that group. We present the intuition that FV systems underperform on protected demographic groups because they are less sensitive to differences between features within those groups, as evidenced by clustered embeddings. We show how this performance discrepancy results from a combination of representation and aggregation bias.
Date issued
2022-04-20Department
Lincoln LaboratoryPublisher
Multidisciplinary Digital Publishing Institute
Citation
Computer Sciences & Mathematics Forum 3 (1): 6 (2022)
Version: Final published version