Show simple item record

dc.contributor.authorIiyama, Yutaro
dc.contributor.authorCerminara, Gianluca
dc.contributor.authorGupta, Abhijay
dc.contributor.authorKieseler, Jan
dc.contributor.authorLoncar, Vladimir
dc.contributor.authorPierini, Maurizio
dc.contributor.authorQasim, Shah Rukh
dc.contributor.authorRieger, Marcel
dc.contributor.authorSummers, Sioni
dc.contributor.authorVan Onsem, Gerrit
dc.contributor.authorWozniak, Kinga Anna
dc.contributor.authorNgadiuba, Jennifer
dc.contributor.authorDi Guglielmo, Giuseppe
dc.contributor.authorDuarte, Javier
dc.contributor.authorHarris, Philip
dc.contributor.authorRankin, Dylan
dc.contributor.authorJindariani, Sergo
dc.contributor.authorLiu, Mia
dc.contributor.authorPedro, Kevin
dc.contributor.authorTran, Nhan
dc.contributor.authorKreinar, Edward
dc.contributor.authorWu, Zhenbin
dc.date.accessioned2022-04-26T15:04:25Z
dc.date.available2022-04-26T15:04:25Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142102
dc.description.abstract<jats:p>Graph neural networks have been shown to achieve excellent performance for several crucial tasks in particle physics, such as charged particle tracking, jet tagging, and clustering. An important domain for the application of these networks is the FGPA-based first layer of real-time data filtering at the CERN Large Hadron Collider, which has strict latency and resource constraints. We discuss how to design distance-weighted graph networks that can be executed with a latency of less than one μs on an FPGA. To do so, we consider a representative task associated to particle reconstruction and identification in a next-generation calorimeter operating at a particle collider. We use a graph network architecture developed for such purposes, and apply additional simplifications to match the computing constraints of Level-1 trigger systems, including weight quantization. Using the hls4ml library, we convert the compressed models into firmware to be implemented on an FPGA. Performance of the synthesized models is presented both in terms of inference accuracy and resource usage.</jats:p>en_US
dc.language.isoen
dc.publisherFrontiers Media SAen_US
dc.relation.isversionof10.3389/FDATA.2020.598927en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceFrontiersen_US
dc.titleDistance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physicsen_US
dc.typeArticleen_US
dc.identifier.citationIiyama, Yutaro, Cerminara, Gianluca, Gupta, Abhijay, Kieseler, Jan, Loncar, Vladimir et al. 2021. "Distance-Weighted Graph Neural Networks on FPGAs for Real-Time Particle Reconstruction in High Energy Physics." Frontiers in Big Data, 3.
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalFrontiers in Big Dataen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-26T14:58:15Z
dspace.orderedauthorsIiyama, Y; Cerminara, G; Gupta, A; Kieseler, J; Loncar, V; Pierini, M; Qasim, SR; Rieger, M; Summers, S; Van Onsem, G; Wozniak, KA; Ngadiuba, J; Di Guglielmo, G; Duarte, J; Harris, P; Rankin, D; Jindariani, S; Liu, M; Pedro, K; Tran, N; Kreinar, E; Wu, Zen_US
dspace.date.submission2022-04-26T14:58:18Z
mit.journal.volume3en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record