Show simple item record

dc.contributor.authorRoland, Gunther
dc.contributor.authorChen, Y.
dc.date.accessioned2022-04-27T15:42:19Z
dc.date.available2022-04-27T15:42:19Z
dc.date.issued2021
dc.identifier.urihttps://hdl.handle.net/1721.1/142131
dc.description.abstractUsing combined data from the Relativistic Heavy Ion and Large Hadron Colliders, we constrain the shear and bulk viscosities of quark-gluon plasma (QGP) at temperatures of ∼150-350  MeV. We use Bayesian inference to translate experimental and theoretical uncertainties into probabilistic constraints for the viscosities. With Bayesian model averaging we propagate an estimate of the model uncertainty generated by the transition from hydrodynamics to hadron transport in the plasma's final evolution stage, providing the most reliable phenomenological constraints to date on the QGP viscosities.en_US
dc.language.isoen
dc.publisherAmerican Physical Society (APS)en_US
dc.relation.isversionof10.1103/PHYSREVLETT.126.242301en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceAPSen_US
dc.titlePhenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averagingen_US
dc.typeArticleen_US
dc.identifier.citationRoland, Gunther. 2021. "Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging." Physical Review Letters, 126 (24).
dc.contributor.departmentMassachusetts Institute of Technology. Laboratory for Nuclear Science
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.relation.journalPhysical Review Lettersen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2022-04-27T15:29:32Z
dspace.orderedauthorsEverett, D; Ke, W; Paquet, J-F; Vujanovic, G; Bass, SA; Du, L; Gale, C; Heffernan, M; Heinz, U; Liyanage, D; Luzum, M; Majumder, A; McNelis, M; Shen, C; Xu, Y; Angerami, A; Cao, S; Chen, Y; Coleman, J; Cunqueiro, L; Dai, T; Ehlers, R; Elfner, H; Fan, W; Fries, RJ; Garza, F; He, Y; Jacak, BV; Jacobs, PM; Jeon, S; Kim, B; Kordell, M; Kumar, A; Mak, S; Mulligan, J; Nattrass, C; Oliinychenko, D; Park, C; Putschke, JH; Roland, G; Schenke, B; Schwiebert, L; Silva, A; Sirimanna, C; Soltz, RA; Tachibana, Y; Wang, X-N; Wolpert, RLen_US
dspace.date.submission2022-04-27T15:29:33Z
mit.journal.volume126en_US
mit.journal.issue24en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record